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ABSTRACT
An l∞ norm based Source Separation Method has recently
been introduced [1, 2], with the corresponding subgradient
based algorithm that has a simple update rule. In this arti-
cle, we propose a moving window modification to this algo-
rithm, where instead of a long fixed window, a shorter length
moving window is used. The simulation results for differ-
ent blind source separation setups suggest that a significant
level of complexity reduction can be achieved via use of the
proposed approach.

1. INTRODUCTION

In the area of Blind Source Separation (BSS), there ex-
ists various approaches that are based on different criteria.
Among these, we can list Maximum Likelihood based meth-
ods (e.g., [3, 4]), methods that are based on maximization of
Non-Gaussianity (e.g., [5, 6, 7] and mutual information min-
imization based methods (e.g., [8, 9, 10]) as most popular
approaches.

Recently, an l∞ norm based geometric BSS has been
proposed for source signals with bounded magnitudes [2].
By this approach finding the independent components from
whitened observations has been posed as a geometric prob-
lem of finding a rotation/reflection that minimizes the maxi-
mum value of the transformer output over the ensemble. The
corresponding cost function is

J(Θ) = sup‖Θx‖∞, (1)

where, the supremum is over the ensemble of outputs, x is
the whitened mixture vectors and Θ is the unitary separator.
With this approach, separation can be achieved in relatively
short bursts of data and the algorithm is robust against the
unknown correlations in the input[2].

The cost function in (1) is non-smooth (but convex), and
therefore, a subgradient based algorithm has been proposed
for this cost function. Although the update rule turns out to
be really simple, as in any batch algorithm (such as FastICA
[11]), the proposed algorithm requires the computation of a
window of output values for each iteration, which turns out to
be the main source of complexity. Therefore, the complexity
can effectively be reduced only if the complexity of output
computations can be reduced. As the complexity of output
computations itself is linearly proportional to the size of the
window, the simplest approach can be considered as the re-
duction of the window size. However, using a small fixed-
window means inadequate sampling of the observations pro-
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cesses which may result in the misrepresentation of the en-
semble behavior. A better approach is the use of a small
moving-window, since it is more likely to capture the en-
semble behavior in multiple windows, which is in fact the
approach that we propose with this article.

The organization of the article is as follows: In Section
2, we provide the BSS setup assumed and information on l∞
norm based approach of [2]. In Section 3, the moving win-
dow modification to this algorithm is provided. The simula-
tion examples for the proposed approach are given in Section
4. Finally, Section 5 is the conclusion.
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Figure 1: Blind Source Separation Setup

2. BLIND SOURCE SEPARATION SETUP AND l∞
NORM BASED ALGORITHM

The instantaneous blind source separation setup that we con-
sider throughout the article is shown in Figure 1. In this fig-
ure,

• s1(k),s2(k), . . . ,sp(k) are source signals. It is assumed
that they are all i.i.d with zero mean and unity variance
(without loss of generality), and mutually independent of
each other. Furthermore, the source signals are consid-
ered to be bounded and complex symmetric in the sense
that

maxℜe{sl} = max Im{sl} = −minℜe{sl}

= −minI m{sl} = M. (2)

• The source signals are mixed by a MIMO system with a
q× p transfer matrix H, which has q outputs denoted by



y1(k),y2(k), . . . ,yq(k). Therefore, we can write







y1
y2
...

yq







︸ ︷︷ ︸

y

= H







s1
s2
...

sp







︸ ︷︷ ︸

s

. (3)

• The goal in BSS is to come up with a separator matrix W

such that its outputs are ”close to” the original sources,
without any knowledge of the channel. We assume that
the separator is composed of two factors, i.e.,

W = W
T
preΘ (4)

where Wpre is the pre-whitening matrix to whiten the
mixtures and Θ is the unitary separator. The whitening
transformation is obtained through second-order statis-
tics based approaches (such as linear prediction), and the
most critical part is to come up with a scheme to obtain
the unitary separator Θ which requires higher order in-
formation.
In [2], the following problem is introduced as an implicit
higher-order statistics approach to obtain Θ:

minimize f (Θ)

s.t. Θ
H
Θ = I,

where

f (Θ) = max
k∈{0,1,...,Ω−1}

‖Re{o(k)}‖∞, (5)

and Ω is the length of the fixed data window. If we de-
fine X = [ x(0) x(1) . . .x(Ω−1) ], as the matrix of
input values in the window of interest, then for a given Θ

the corresponding outputs can be placed in a matrix O:

O = [ o(0) o(1) . . . o(Ω−1) ] (6)

= Θ
T
X. (7)

Based on these definitions, the subgradient based BSS
algorithm of [2] can be written as

Θ
(i+1)= Θ

(i) −µ(i)
ℜe{O(i)

m(i)
,n(i)}

|ℜe{O(i)
m(i)

,n(i)}|
X̄:,n(i)e

T
m(i) (8)

Θ
(i+1)= PU{Θ

(i+1)}, (9)

where
– Θ

(i) is the value of Θ at the ith iteration,
– O

(i) is the output matrix calculated based on Θ
(i),

– (m(i)
,n(i)) is the index for a maximum real compo-

nent magnitude entry of O
(i),

– µ(i) is the step size at the ith iteration. We use the
relaxation rule for fast convergence. (see [2] for the
details).

– Θ
(i+1) is the unprojected version of the updated Θ,

– PU is the projection operator to the unitary matrix
set where we use the minimum-distance projection
operator to the set of unitary matrices [2] which is
defined as

Θ
(i+1) = PU{Θ

(i+1)}

= PU{U
(i+1)

Σ
(i+1)

V
(i+1)H

}

= U
(i+1)

V
(i+1)H

,

where U
(i+1)

Σ
(i+1)

V
(i+1)H

is the SVD of Θ
(i+1).

These matrices can be conveniently computed using
a Gram-Schmidt based algorithm [2] which exploits
the special update structure in (8).

3. THE MOVING WINDOW APPROACH

The fixed-window algorithm summarized in the previous
section has a simple update rule with a low computational
requirement. However, it is a batch algorithm and each itera-
tion requires computation of Ω output vectors, which domi-
nates the overall computational requirement. In order to cap-
ture the ensemble behavior, Ω needs to be chosen as large as
possible.

To reduce the complexity, we can choose to use a shorter
window length. However, as the ensemble behavior is re-
flected by the use of larger number of independent samples,
we need to use a moving window approach.

For the moving window approach, the window is pro-
posed to be cascade of two sub-windows:

X
(i) =

[

P
(i)

D
(i)

]
, (10)

where
• D

(i) is a p×ΩD matrix, which contains ΩD new input
data vectors:

D
(i) = [ x(iΩD) x(iΩD +1) . . . x((i+1)ΩD −1) ] ,

(11)
• P

(i) is a p×ΩP matrix, which contains the window of
ΩP past input vectors used in search vector computation.
In a typical moving window based adaptive algorithm,

only D
(i) matrix is used. We include P

(i) as a memory el-
ement and the inclusion of this component can be justified
by the fact that an input vector that created maximum (real)
component output in the previous windows is likely to cause
the maximum real output in a new window. The reasoning
for this can be given as follows: the input vector causing
the maximum real output given in a given window has the
maximum alignment with the error vector w−wopt , and this
alignment can continue for several iterations especially when
w is not in the vicinity of wopt and the step size is small.
The inclusion of the memory element in a window is also
intuitive in terms of spreading infinity-norm evaluation to a
longer time span.

The output data matrix will be given by

O
(i) = Θ

(i)T
X

(i)
, (12)

and the only change in update expression of (8) would be the
inclusion of the super index for the input vector:

Θ
(i+1)= Θ

(i) −µ(i)
ℜe{O(i)

m(i)
,n(i)}

|ℜe{O(i)
m(i)

,n(i)}|
X̄

(i)
:,n(i)e

T
m(i) (13)



Θ
(i+1)= PU{Θ

(i+1)}. (14)
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Figure 2: SNR convergence curves for the fixed window al-
gorithm with window length 1000.

As illustrated by the examples in the next section, when
we use the moving window approach to replace the fixed
window version, window size can be reduced by a factor of
50-100 whereas the required number of iterations increases
by a factor of 2-3. Hence, this approach can provide a re-
markable reduction in the overall complexity.

4. SIMULATION EXAMPLES

In the first example, we assume the simulation setup in [6]
where H is defined as

H =

[

−0.307+0.071i −0.844+0.379i
−0.616+0.691i 0.1798−0.3315i

]

(15)

and xi’s are the identically distributed subgaussian random
variables with the probability mass function (pmf)

p(x) =

{ 3
4 x = 0,

1
16 x = 1+ i,1− i,−1+ i,−1− i.

(16)

The output of H is corrupted by a Gaussian noise and SNR =
30dB.

In Figure 2, the fixed window algorithm’s SNR conver-
gence curves (for different runs of the algorithm) are shown,
where the window length is equal to 1000. The algorithm
converges in about 15 iterations on average, which corre-
sponds to a requirement of 15000 output computations.

In Figure 3, the convergence curves for the moving win-
dow algorithm are shown. In the moving-window version
both ΩD and ΩP are taken as 15. According to this figure,
50 iterations on average is needed. Therefore, we need about
(ΩD +ΩP)∗50 = 30∗50 = 1500 output computations. Com-
paring this with the fixed window version, it can be seen that
a factor of 10 complexity reduction is achieved.

In the second example, we consider a scenario with 5
sources and 6 mixtures, where the channel is arbitrarily se-
lected. The source signals are zero mean 16−QAM i.i.d. se-
quences. We assume that the output of the channel is cor-
rupted by an additive white Gaussian noise. The average
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Figure 3: SNR convergence curves for the moving window
algorithm.
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Figure 4: SNR convergence curves for the fixed window al-
gorithm with window length 1000.

power of the noise is such that the overall SNR is equal to
40dB.

In Figure 4, SNR convergence curves (for different runs)
for the algorithm with fixed window are shown. Here the
window length is chosen as Ω = 1000. According to this
figure, the algorithm converges in 50 iterations on average.

The convergence curves (for different runs) for the mov-
ing window version of the algorithm are shown in Figure 5.
In this case , ΩD is selected as 14 and ΩP = 0. According to
this figure, the algorithm converges in 100 iterations on aver-
age. The worst case convergence occurs for 200 iterations.

If we compare the complexities of the fixed window and
the moving window algorithms for the above example: we
first note that the window size is reduced by a factor of 70
where as the required number of iterations only increased by
a factor of 2 by the use of moving window algorithm. If we
calculate the required number of output computations:
• Fixed window source separation algorithm requires 50 ∗

1000 = 50000 output computations.
• Moving window algorithm requires 100∗14 = 1400 out-

put computations. We should note in this case that we
only need to do one output vector computation per input
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Figure 5: SNR convergence curves for the moving window
algorithm with window length 14.

vector and only about 100 updates.
Therefore, since both algorithms’ complexities are domi-
nated by the output computations, complexity is reduced by
a factor more than 30 through use of moving window algo-
rithm.

5. CONCLUSION

Blind source separation algorithm based on l∞ norm mini-
mization has the feature that its update rule is very simple and
therefore the complexity is mostly dominated by the output
computations. We introduced a moving window approach to
significantly reduce the number of output computations per
iteration (at the expense of slight increase in the number of it-
erations). As illustrated by the examples, by the moving win-
dow approach, the overall computational requirement can be
lowered to a level that is suitable for real-time implementa-
tions.
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