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ABSTRACT

This paper deals with the problem of radio localization of mov-
ing terminals (MTs) for indoor applications with mixed line-of-
sight/non-line-of-sight (LOS/NLOS) conditions. To reduce false lo-
calizations, a Bayesian approach is proposed to estimate theMT po-
sition. The tracking algorithm is based on a Hidden Markov Model
(HMM) that permits to jointly track both the MT position and the
sight condition. Numerical results show that the proposed HMM
method improves the localization accuracy in LOS/NLOS indoor
environments.

1. INTRODUCTION

In wireless communication systems, localization of moving termi-
nals (MTs) is obtained through the estimation of propagation pa-
rameters related to the MT location [1] [2]. The estimation is
performed by exchanging radio signals with L fixed access points
(APs) placed in known positions. Typical parameters are: time of
arrival (TOA), time difference of arrivals (TDOA), angle of arrival
(AOA) and received signal strength intensity (RSSI). The relation-
ship between these parameters and the MT position is given by an-
alytical models or through field measurements. The most common
approach for localization is the evaluation of the MT-APs distances
(ranging) from estimates of the above mentioned parameters, then
followed by tri- (L = 3) or multi- (L > 3) lateration.

In indoor environments characterized by densemultipath and/or
NLOS conditions, false localizations arise as ranging results in ap-
parent or biased distances due to propagation over secondary paths.
Errors can be reduced by exploiting redundant measurements (large
L), combining analytical models with maps of measurements (i.e.,
by a preliminary calibration step), or using Bayesian methods to
track the MT trajectory instead of estimating one position at a time.

In this paper, we propose a HMM-based (Hidden Markov
Model) [3] tracking algorithm that estimates the MT location at a
given time instant exploiting all the measurements along the MT
trajectory up to that instant. The method is based on the Detec-
tion/Tracking Algorithm (D/TA) [4], here adapted to the specific
localization problem. It is a forward-only algorithm that can work
in real-time by maximizing the a-posteriori probability of the HMM
state given all the signals measured over the L links up to the cur-
rent position. The measurements used for localization are the power
delay profiles for the signals received over the L radio links. No-
tice that the RSSI-delay profile is more informative than the total
RSSI, as it is a joint measurement of TOA and power. Furthermore,
to improve the localization accuracy, we propose to track the MT
position directly from RSSI-delay profiles rather than ranging and
multi-lateration.

In order to cope with indoor propagation and reduce the esti-
mate bias due to the multipath, the HMM is adapted to account for
mixed LOS/NLOS situations. The hidden Markov state is defined
as the combined set of the MT position and the L LOS/NLOS con-
ditions for all the MT-AP links; in this way, the D/TA can jointly
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Figure 1: Localization of a MT from the radio signals exchanged
with L fixed APs placed in known positions. Gray color indicates
the LOS coverage for the �th AP.

track both the position and the sight condition exploiting continu-
ity information. With respect to other Bayesian estimators, such as
the extended Kalman filter (EKF) [5], the DT/A algorithm does not
rely on linearization and Gaussian assumptions still having about
the same computational complexity. Furthermore, it may be eas-
ily adapted to incorporate any type of measurements such as DOAs
estimated from antenna array receivers.

The paper is organized as follows. The localization problem is
described in Section 2. In Section 3 and 4 we propose the maxi-
mum likelihood estimate (MLE) of one position at a time and the
HMM-based tracking of the position trajectory, respectively. Nu-
merical results are discussed in Section 5. Section 6 draws some
conclusions.

2. PROBLEM FORMULATION

We consider the localization problem illustrated in Fig. 1. The spa-
tial location of a moving terminal (MT) has to be estimated from
the radio signals exchanged by the MT with L fixed APs placed
in known positions. Let qi be the 2D spatial coordinates of the
MT at time i, for i = 0, 1, . . . , I − 1 (I defines the number of
location estimates performed by the tracking system). In addition,
qAP(�) denotes the fixed 2D spatial coordinates of the �th AP for
� = 1, . . . , L. To simplify, we constrain qi and qAP(�) to be
defined on a regular squared grid Q (with assigned spatial sam-
pling interval ∆q), composed of N1N2 points n = [n1, n2] with
n1 ∈ {0, . . . , N1−1} and n2 ∈ {0, . . . , N2−1}. The real-valued
discrete-time signal vector ri(�) = [ri(0; �) · · · ri(M − 1; �)]T,
measured at the ith time instant over the �th MT-AP link (with sam-
pling time interval ∆t), is modelled as a non-stationary zero-mean
white Gaussian process. It is the superposition of two signals

ri(�) = x(qi,qAP(�), si(�)) +wi(�). (1)

The term wi(�) ∼ N (0, σ20IM ) is AWGN (IM is the unitary
matrix of size M ), while x(qi,qAP(�), si(�)) is the radio signal
transmitted over the dense multipath channel linking qAP(�) to qi.
Its power-delay-profile (PDP) depends on the sight condition si(�)
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Figure 2: Signal model: a) RSSI delay profile; b) Measured signal.

over the �th link, here indicated as si(�) = 0 for LOS and si(�) = 1
for NLOS. The power of the signal sample ri(t; �) varies along the
delay axis t according to the filtered Poisson process model [6]

Var(ri(t; �)) =

{
σ20, t < τ̄ i(�)
σ20 + σ21(τ i(�))ρ

t−τi(�), t ≥ τ̄ i(�)
, (2)

decaying exponentially with attenuation factor ρ < 1 from the first
arrival delay τ̄ i(�) (see Fig. 2). The first arrival delay

τ̄ i(�) = τ i(�) + si(�) ·∆τ i(�)
equals the propagation time τ i(�) = �di(�)/c	 over the MT-AP
distance di(�) = d(qi,qAP(�)) in case of LOS (si(�) = 0), while
it is increased by ∆τ i(�) > 0 in case of NLOS (si(�) = 1). The
excess delay∆τ i(�) will be modeled as a random variable with dis-
tribution f∆(δ). Here �x	 denotes the nearest integer for the real
value x while c is the propagation velocity normalized by ∆q/∆t.
According to the path-loss law, the signal power σ21(τ) received at
distance d = cτ is given by

σ21(τ) = σ21(τ ref)(τ/τ ref)
−α

(3)

where σ21(τ ref) is the power received at the reference distance
dref = cτ ref and α is the path-loss exponent (typical values are
α = 2 ÷ 4). The SNR is here defined as η(τ) = σ21(τ)/σ

2
0 =

η(τ ref) · (τ/τ ref)−α. An example of path-loss profile is illustrated
in Fig. 2; since � = 1, the AP index is dropped.

The RSSI delay profile (2) is characterized by an abrupt change
(or break-point event - BP) for τ = τ̄ i(�). In case of LOS (si(�) =
0), the BP position τ̄ i(�) = τ i(�) and the corresponding RSSI peak
power σ21(τ i(�)) are related to the MT-AP distance di(�) = c ·
τ i(�). It is therefore possible to estimate the MT location qi by
a separate estimation (or ranging) of each distance di(�) from the
measurement ri(�) for � = 1, . . . , L, then followed by a tri- or
multi-lateration (for L = 3 or L > 3, respectively) of {di(�)}L�=1.
This approach is the mostly adopted in the literature, though the
measurement used for ranging is usually the total RSSI and not the
RSSI-delay profile.

On the contrary, we propose here to estimate qi directly from

the compound measurement ri = [r
T
i (1), . . . , r

T
i (�)]

T ∈ RML×1.
At first, in Sec. 3, we consider the local MLE of qi from ri. The
shortcoming of this "memory-less" approach is the high number of
false localizations that occur in NLOS conditions. In fact, in NLOS
situations, the BP depends on the fictitious distance di(�)+∆di(�),
where the bias∆di(�) = c ·∆τ i(�) > 0 is due to the propagation
over reflected path. To overcome this problem, in Sec. 4, we pro-
pose a tracking approach that estimates the position qi from the

whole set Ri = [r0, r1, . . . ,ri] of signals measured up to the cur-
rent time instant i, by exploiting the continuity of the MT trajectory.
To take care also of mixed LOS/NLOS conditions, the proposed
HMM method is based on the assumption that both the mobile po-
sition qi and the L sight conditions are Markov chains whose state
is hidden in the measured signalsRi and must be jointly recovered.

3. LOCAL ESTIMATION

At each time instant, the MT state is characterized by the position-
sight valueOi = (qi, si), where qi ∈ Q is the spatial location and
si = [si(1), . . . , si(�)] ∈ S are the LOS/NLOS sight conditions
with respect to the L APs. The sight set S = {0, 1}L is composed
of 2L possible sight combinations, while Oi can assume 2

LN1N2

possible position-sight values. The local MLE Ôi = (q̂i, ŝi) from
the L-link measurement ri is the maximizer in (n,k) of the condi-
tioned pdf bn,k(ri) = P (ri|Oi = (n,k)) for n =[n1, n2] ∈ Q,
k = [k1, . . . , kL] ∈ S and k� = {0, 1}. Assuming the observations
{ri(�)}L�=1 conditioned toOi = (n,k) as statistically independent,
the likelihood function simplifies to

bn,k(ri) =
∏L

�=1
P (ri(�)|qi = n, si(�) = k�). (4)

In the LOS case (si(�) = 0), the �th conditioned pdf in (4) is

P (ri(�)|qi = n, si(�) = 0) = Λ(ri(�), �d(n,qAP(�))/c	 , 0)
(5)

where Λ(r, τ ,∆τ) is the likelihood function for a generic observa-
tion r = [r(0), . . . , r(M−1)]T, LOS delay τ and NLOS additional
delay ∆τ . Being φ(x) = exp(−x2/2)/√2π the normal function,
from model (1) we get

Λ(r, τ ,∆τ) =
τ+∆τ−1∏
t=0

φ
(
r(t)
σ0

)
σ0

M−1∏
t=τ+∆τ

φ

(
r(t)√

σ2
0
+σ2

1
(τ)ρt−τ

)
√
σ20 + σ21(τ)ρ

t−τ
.

(6)
Assuming f∆(δ) known, for NLOS condition (si(�) = 1), it is

P (ri(�)|qi = n, si(�) = 1) =
∑
δ

f∆(δ)Λ

(
ri(�),

⌊
d(n,qAP(�))

c

⌉
, δ

)
.

4. BAYESIAN ESTIMATION: HMM TRACKING

The HMM framework is here defined by selecting as Markov state
the joint position-sight variable Oi. The state is hidden in the L-
link observation ri, whose conditioned probability density func-
tions (pdf) bn,k(ri) can be calculated as in Sect. 3. The overall
HMM set λ = (A,B,π) is defined by assigning the state transi-
tion probabilitiesA, the observation probabilitiesB, and the initial
state probabilities π.

The transition probabilities are calculated by modelling both
the position qi and the sight si as independent first-order homoge-
neous Markov processes. The MT movement within the 2D space
is generated by equation

qi = qi−1 + vi (7)

where vi is the 2D discrete driving process with known distribution
fv(n1, n2) = P (vi = n). The transitions between states are ruled
by theN1N2 ×N1N2 probabilities

a(p)m,n = P (qi = n|qi−1 =m) = fv(n1 −m1, n2 −m2) (8)

form =[m1,m2], n =[n1, n2] ∈ Q (see examples in Fig. 3).
Each sight process si(�) is modeled as a 2-state first-order

homogeneous Markov chain with transition probabilities a
(s)
h,k =

P (si(�) = k|si−1(�) = h) for h, k ∈ {0, 1}. The probability
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Figure 3: Examples of distribution fv(n1, n2) for random 2-D
driving process vi. Notice that a large fv(0, 0) value indicates that
the MS is frequently still as shown in figures a) and c).

to remain in the LOS or NLOS state is, respectively, p0 = a
(s)
0,0 or

p1 = a
(s)
1,1. Due to probability normalization, it is also a

(s)
0,1 = 1−p0

and a
(s)
1,0 = 1−p1. For the APs independence, the transition proba-

bilities for the overall sight process si are a
(s)
h,k =

∏L

�=1 a
(s)
h�,k�

for

any h = [h1, . . . , hL] and k = [k1, . . . , kL] ∈ S. According to the
independence assumption for qi and si, the probability of transition
fromOi−1 = (m,h) toOi = (n,k) is

a
(ps)
(m,h),(n,k) = a(p)m,na

(s)
h,k (9)

for m,n ∈ Q and h,k ∈ S. A zero state Oi = 0 is also in-
troduced to indicate the lack of the MT signal (i.e., no MT de-

tected), yielding the overall set O of 2LN1N2 + 1 position states.
The (2LN1N2 + 1) × (2LN1N2 + 1) transition matrix A for the
whole set of states, including the zero state, has elements defined

as: a0,0 = 1 − θ, a0,(n,k) = θ/(2LN1N2), a(m,h),0 = ν,

a(m,h),(n,k) = (1−ν)a(ps)(m,h),(n,k)Γm form,n ∈ Q andh,k ∈ S.
The parameters θ and ν represent the probabilities of, respectively,
trajectory initiation and termination while Γm is a factor used to
normalize the transition probabilities between non-zero states.

Notice that the observation pdf set B = {b0(·), bn,k(·)} must
also include the zero-state conditioned pdf b0(ri) = P (ri|Oi = 0)

b0 (ri) =
1

(
√
2πσ0)LM

exp

[
− 1

2σ20

L∑
�=1

M−1∑
t=0

r2i (t; �)

]
. (10)

The initial state distribution for the HMM is defined by assign-

ing the 2LN1N2 + 1 initial probabilities π = {π0, {π(n,k)}},
where π0 = P (O0 = 0) and π(n,k) = P (O0 = (n,k)).

Given the complete HMM parameter set λ, the D/TA estimates
the position-sight state Oi based on all the measurements Ri col-
lected up to the ith instant, by maximizing the a-posteriori pdf

0 4 12 16 20 24
10-1

100

101

102

103

[dB]

R
M
S
E
 [
s
a
m
p
le
s
]

a)     sensitivity

8

η̂

η
b)        sensitivity

50 100 150 200
rmsτ

t
rms

∆/τ

dB 2=η

dB 6=η

dB 10=η

dB 14=η

dB 10=η

dB 14=η

dB 2=η

dB 6=η

Figure 4: Sensitivity for the delay/range estimate vs. the SNR η̂ and
the PDP factor ρ̂ = exp(−∆t/τ rms) used for tracking: a) RMSE vs.
SNR; b) RMSE vs. τ rms. HMM parameters used: η = 2, 6, 10, 14
dB and τ rms = 100∆t. RMSE is normalized by∆t.

10-110-0.5100100.5101101.5102

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

R
M
S
E
 [
s
a
m
p
le
s
]

 d) Sections

10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

MLE
D/TA

Wall Wall

10 20 30 40 50 60 70 80

10

20

30

40

50

60

n
1

0

n
2

b) D/TA

10

20

30

40

50

60

AP2

AP1

AP4

AP3

 c) Coverage

4 AP3 AP2 AP1 AP0 AP Wall

y
 [
s
a
m
p
le
s
]

 a) MLE 

10

20

30

40

50

60

n
2

n
1

Figure 5: a-b) RMSE as a function of the spatial position for theML
estimate (a) and the D/TA (b). c) AP coverage. d) RMSE of figures
(a) and (b) along the section n1 = 31 (plotted as black dashed
line in figures (a) and (b)). The RMSE performance is drawn for
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Notice that, as shown in figure (c), there is no area with coverage 4
and that a large portion lacks of coverage.

γi(n,k) = P (Oi = (n,k) | Ri,λ) with respect to (n,k). The
a-posteriori pdf is calculated according to the forward recursion [3]

γi (n,k) ∝ bn,k (ri)
∑

(m,h)∈O

a(m,h),(n,k) γi−1 (m,h) . (11)

At the first step (i = 0), the initialization of the a-posteriori prob-
abilities is obtained as: γ0 (n,k) ∝ bn,k (r0)π(n,k), γ0 (0) ∝
b0 (r0)π0.

5. PERFORMANCE ANALYSIS

At first, in Fig. 4, we investigate the robustness of the local MLE
to mismodeling. As a single AP (L = 1) is considered in LOS
conditions only, localization reduces to the estimation of the MT-
AP distance di(1) (i.e., ranging) or, equivalently, of the TOA τ i(1).
The estimation is obtained by maximizing with respect to τ i(1) the
likelihood function Λ(ri(1), τ i(1), si(1) = 0). We analyze the
sensitivity of the MLE to the SNR η = η(τ ref) and the decaying
PDP factor ρ by generating measurements with fixed parameters η
and ρ and by estimating the TOAwith η̂ �= η or ρ̂ �= ρ. A set of I =
1000 measurements ri(1) is generated with M = 1000 samples
each (obtained by sampling a continuous-time signal of duration
100 ns at a fs = 1/∆t = 10 GHz rate), with PDP ρ = 0.9,
τ i(1) = τ ref = M/2 ∀i, and η ∈ {2, 6, 10, 14} dB. In Fig. 4a the
root mean square error (RMSE) of the TOA estimate is evaluated
for ρ̂ = ρ and η̂ ranging from 0 to 24 dB. On the other hand, Fig.
4b shows the RMSE for η̂ = η and ρ̂ = exp(−∆t/τ rms) with
τ rms ranging from 5 to 20 ns (i.e., from 50 to 200 time samples).
Minimum RMSE is always reached for true values η̂ = η or ρ̂ = ρ,
as it is shown by the solid line indicating the locus of the RMSE
minima. It can be noticed that the RMSE around η̂ ≈ η is quite flat:
good performances can be obtained even for rough estimates of the
model parameters (mostly for large η).

The performances of the localization algorithms are evaluated
by simulating a MT moving within the rectangular indoor environ-
ment shown in Fig. 1 having dimensions 30× 40 m (i.e.,N1 = 61
andN2 = 81 at a sampling step of∆q = 50 cm), L = 4APs, walls
and doors located as indicated in the figure (the area close to each
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AP is not used). Changes of the MT location over the time are sim-
ulated according to a conic-shaped pdf fv(n1, n2) (as in Fig. 3c).
The sight conditions {si(�)}4�=1 are determined according to the
coverage map in Fig. 5c and tracked using four independent first-
order Markov chains. Measurements are sampled at fs = 1 GHz
and have lengthM = 150. The first arrival delay τ i(�) is calculated
from the MT-AP distance and, for NLOS, from an exponentially
distributed excess delay ∆τ i(�) with f∆τ (δ) ∝ exp (−δ/σ∆τ )
and σ∆τ = 10. The signal power σ21(τ) is derived according to
the path-loss law, with α = 2.4 and η(τ ref) = 40 dB at dref = 2.
An exponential PDP is simulated with ρ = 0.9. The algorithm per-
formances are evaluated in terms of RMSE of the location estimate
as a function of the spatial position over a trajectory of I = 30000
time intervals. For a given position qi∈Q, the RMSE is evaluated
as RMSE(qi) = [

∑
j∈I(qi)

||qi − q̂j ||2/N(qi)] 12 , where I(qi) is
the set of all instants in which the trajectory flows across qi and
N(qi) is its cardinality. The sight transition probabilities p0 and
p1 used for tracking were estimated by a preliminary training phase
performed on the specific environment. In this case, a trajectory of
I = 20000 steps was simulated and used to calculate the relative
frequencies of transition from LOS to NLOS and viceversa, yield-
ing p0 � p1 � 0.9 (independent of the MT position).

Fig. 5 shows the RMSE of the estimate as a function of the
position qi∈Q for both the local MLE (Fig. 5a) and the D/TA (Fig.
5b), in case of mixed LOS/NLOS sight. In the MLE map, the error
is shown to increase in poorly covered areas (such as the central
corridor and the corners of the rooms), while it is uniform in areas
with good AP coverage. This effect is due to false positioning errors
occurring when one or more measurements ri(�) refer to a distant
AP. These problems are solved by the D/TA which yields a uniform
error map all over the layout. The advantage of the D/TA (especially
in mixed LOS/NLOS conditions) is more evident in Fig. 5d, which
shows the sections of the maps in Fig. 5a-b evaluated for n2 = 31.
The local MLE yields very poor performance, with RMSE ranging
from 0 to 30. On the other hand, the D/TA error is stable around 5,
yielding a high performance gain with respect to MLE, especially
in the corridor area where the sight tracking capability of the D/TA
is more effective.

An example of trajectory estimation is shown in Fig. 6 where
the path has been generated smoother and shorter (I = 50) for vi-
sualization purposes only. The figure compares the true trajectory
(thick line) with the estimated ones (markers) obtained by the local
MLE (left) and the D/TA (right). The estimate errors can be appre-
ciated by looking at the lines that connect the true and the estimated
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fv(n1, n2): a) true probabilities (used to generate the observations);
b) estimated probabilities at iteration number k = 0, 1, 2, 5, 15
(k = 0 is the initialization step).

positions. False positioning for NLOS conditions (e.g. in the central
corridor) occurs only using local MLE.

The Baum-Welch re-estimation algorithm [3] can be used for
the estimation of the HMM parameters from field data. This is
described in Fig. 7 for the re-estimation of the position-transition
probabilities fv(n1, n2). A set of 100 training trajectories of length
I = 1000 are generated according to the transition probabilities
fv(n1, n2) shown in Fig. 3c. The transition probabilities are con-
sidered as unknown during the tracking phase and they are therefore
estimated by an iterative procedure. Since no a-priori information is

available on fv(n1, n2), at first iteration a uniform pdf f
(0)
v (n1, n2)

is used to track the MT trajectory. On the basis of the estimated

sequence of positions and f
(0)
v (n1, n2), a new pdf f

(1)
v (n1, n2) is

calculated and used to track again the trajectory. The process is iter-
ated till convergence. Fig. 7b shows that few iterations are enough
to approach the true distribution.

6. CONCLUSIONS

A novel approach based on HMM has been proposed to track lo-
cation of moving terminals. The proposed algorithm alleviates the
LOS/NLOS problem in dense multipath conditions by adding, for
each radio link, the sight state. Simulations show that false local-
izations in mixed LOS/NLOS conditions are highly reduced with
respect to local estimation methods.
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