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ABSTRACT

In this paper we propose a new soft method for the estimation of
block-fading channels based on multi-block (MB) processing. The
MB estimator [1] exploits the invariance of the subspace spanned by
the multipath components of the channel and it estimates the chan-
nel subspace by sample averaging over a frame of blocks. Here
the MB method is extended to incorporate also soft information,
which is available in iterative (turbo) equalizers. The mean square
error (MSE) of the soft-based estimate is evaluated analytically and
validated by simulations. The comparison with the conventional
training-based block-by-block estimate shows the benefits of the
proposed approach on the turbo equalizer convergence.

1. INTRODUCTION

Iterative (turbo) equalization is a powerful technique that can be
adopted at the receiver when data, protected by an error correc-
tion code, is transmitted over a frequency selective channel causing
inter-symbol (ISI) and/or co-channel interference. The equalization
and decoding tasks are performed iteratively on the same block of
received signals, with exchange of soft information, so as to refine
the data estimate [2].

It is well known how the reliability of channel state information
(CSI) can be crucial for the convergence of turbo equalization [4].
In block transmission systems the CSI is usually obtained block-by-
block from the training symbols included in each block (training-
based single-block or SB estimate). In this paper we propose to im-
prove the CSI accuracy by means of a soft-based multi-block (MB)
processing. The method is developed for a generic wireless com-
munication system under the assumption of block-fading channel
(the fading is constant within each block, but it varies from block to
block due to the terminal mobility).

In the literature the use of soft information for channel estima-
tion has been largely investigated to improve the performance of
iterative receivers [3]-[5]. The basic idea is to repeat channel esti-
mation at each iteration by exploiting the soft information fed back
by the channel decoder. In this paper we derive a soft-iterative ver-
sion of the training-based MB estimator [1]. Since turbo processing
is usually performed on a set of L > 1 data blocks (L depending
on the interleaver size), we propose to take advantage of this inher-
ent latency to improve the estimate accuracy for the slowly varying
channel parameters. TheMB approach relies on the assumption that
the multipath delays remain constant within the L blocks, while the
fading amplitudes vary from block to block. The subspace spanned
by the channel responses over the different paths (here referred to as
the channel subspace) can be estimated by sample averaging from
the signals received over the L blocks, while the fast varying pa-
rameters need to be calculated block-by-block. In this paper we
propose a soft-based MB approach where the initial estimate is ob-
tained from the pilot symbols as in [1] and it is then refined in the
subsequent iterations by extending the training set with soft-valued
information symbols. With respect to [1], here the use of the soft in-
formation allows to improve the accuracy for both the channel sub-
space and the fading amplitude estimates. In this paper the estimate
is proposed for a single-input-single-output system, but the same
method can be also applied to single-input-multiple-output (SIMO)
or multiple-input-multiple-output (MIMO) systems [6].

The paper is organized as follows. Sec. 2 presents the sig-
nal model for a block-based transmission system and the receiver
structure. Soft MB estimation is in Sec. 3, the analytical evaluation
of the MSE is in Sec. 4. Sec. 5 shows by simulations the advantage
of the proposed method and Sec. 6 gives the concluding remarks.

2. SYSTEM DESCRIPTION

2.1 Signal model

We consider the equivalent complex baseband model for the con-
volutionally coded system in Fig. 1. A sequence {d(i)} of bi-
nary information symbols, d(i) ∈ D ={+1,−1}, is convolu-
tionally encoded with code rate R. The output code bits {c(i)}
are permuted by a random interleaver Π[·], b(i) = c(Π[i]),
and mapped into quadrature phase-shift-keying (QPSK) symbols

xd(i) = (b(2i) + jb(2i + 1))/
√
2 of duration Ts (the analysis

can be easily extended to larger constellations). After mapping,

the overall sequence {xd(i)} is split into L blocks of N ′

d sym-

bols each: xd(�) = [xd(0; �), . . . , xd(N
′

d − 1; �)], with xd(i; �) =
xd((� − 1)Nd + i), for � = 1, . . . , L. In order to allow channel
estimation at the receiver, an uncoded training sequence xt(�) =

[xt(0; �), . . . , xt(N
′

t − 1; �)] is added as preamble within each
block, yielding the overall sequence x(�) = [xt(�),xd(�)] =

[x(0; �), . . . , x(N
′−1; �)] of lengthN ′ = N

′

t +N
′

d. The L blocks
are then transmitted over a block-faded frequency-selective chan-
nel.

At the receiver, after matched filtering and sampling at the sym-
bol rate, the signal measured within the �th block is

y(i; �) = xT(i; �)h(�)+w(i; �), i = 0, . . . , N
′

+W−2 (1)
where x(i; �) = [x(i; �), . . . , x(i−W + 1; �)]T ∈ CW×1 collects
W (either training or information) symbols, the complex Gaussian
noise w(i; �) is white, with zero mean and known variance σ2w:
E [w∗(i; �)w(i+ k; �+m)] = σ2wδkδm (δk = 1 for k = 0,
δk = 0 elsewhere). The channel is modelled as a linear filter
h(�) ∈ CW×1 (including transmitter/receiver filters and multipath
effects) that is constant within the block interval but varying from
block to block.

2.2 Iterative receiver structure

The iterative receiver structure is shown in Fig. 2. It consists of
a soft-in channel estimator, a sliding window soft-input-soft-output
(SISO)minimummean square error (MMSE) linear equalizer [7][8]
and a log maximum a-posteriori (log-MAP) SISO decoder [9] sep-
arated by interleaver/de-interleaver.

At each iteration the soft channel estimator derives (as de-
scribed later in Sect. 3) a new estimate for the channels {h(�)}L�=1,
by exploiting both the training symbols and the a-priori log-
likelihood ratios (LLR) λ1[b(i)] = log[P [b(i) = +1]/P [b(i) =
−1]] for the data-bearing bits b(i). The channel estimates and the
a-priori LLR λ1[b(i)] are used by the SISO equalizer [8] to com-

pute the MMSE estimate b̂(i) and the corresponding extrinsic LLR

λE1 [b(i)] = log[P [b̂(i)|b(i) = +1]/P [b̂(i)|b(i) = −1]] (calculated
under the Gaussian approximation), with λE1 [b(i)] = Λ1[b(i)] −
λ1[b(i)], and Λ1[b(i)] denoting the a-posteriori LLR. After equal-
ization, the soft information λE1 [b(i)] is reversed interleaved and it
is passed to the decoder as a-priori LLR λ2[c(i)] = log[P [c(i) =
+1]/P [c(i) = −1]], for each code bit c(i) = b(Π−1[i]). The de-
coder [9] computes the a-posteriori LLRΛ2[c(i)] and it delivers the
new extrinsic LLR λE2 [c(i)] = Λ2[c(i)] − λ2[c(i)]. The refined
soft information is interleaved again and used as new a-priori LLR
λ1[b(i)] for further iterations. At the last iteration, the a-posteriori
LLR for the information bit d(i) is computed as well to provide the

final estimate d̂(i).
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Figure 1: Transmitter structure.

In the following we focus on channel estimation. For further
details on the equalization and the decoding tasks in addition to the
review above we refer to the cited papers.

2.3 Subspace channel model

Within the L blocks the channel is modelled according to the
multipath model h (�) = G(τ )α (�), superposition of d paths
having constant delays τ = [τ1, ..., τd] and block-fading ampli-
tudes α (�) = [α1 (�) , ..., αd (�)]. The kth column, g(τk), of
the matrix G(τ ) ∈ R

W×d contains the system pulse waveform
(convolution between the transmitter and the receiver filters), de-
layed by τk and sampled at the symbol rate. According to the
Rayleigh fading and wide sense stationary uncorrelated scattering
(WSSUS) assumptions, it is α (�) ∼ CN (0,Rα) with Rα =
diag{A1, ...,Ad} describing the power-delay-profile. It follows
thath (�) ∼ CN (0,Rh), with covarianceRh =G(τ )RαG

T(τ ).
Notice that, since the columns ofG(τ ) are not necessarily indepen-
dent, it is r = rank[G(τ )] = rank[Rh] ≤W . The r-dimensional
subspace R(G(τ )) = R(Rh), defined by the multipath compo-
nents {g(τk)}dk=1, will be referred to as the channel subspace.
Its dimension r represents the number of resolvable delays for the
bandwidth of the transmitted signal.

Based on the assumptions above, the channel vector can be
rewritten in terms of the new parameters [1]

h (�) =Ub (�) , (2)

where U ∈ C
W×r is a constant full-column rank matrix having

as column space the channel subspace R(U) = R(Rh), while
b (�) ∈ C

r×1 is a block-fading vector. Notice that the para-
meterization (2) is not unique; for instance, we can select U as
the matrix containing the r eigenvectors of Rh (stationary chan-
nel modes), the corresponding amplitudes (modal amplitudes) are

b (�) = UHh (�) ∼ CN (0,Λ) where Λ is the r × r diagonal
matrix containing the r eigenvalues ofRh.

3. CHANNEL ESTIMATION

For channel estimation it is convenient to rewrite the model (1) as{
yt (�) = Xt (�)h (�) +wt (�) , Training
yd (�) = Xd (�)h (�) +wd (�) , Data

(3)

where yt(�) = [y(W ; �), . . . , y(N
′

t − 1; �)]T ∈ C
Nt×1 and

yd(�) = [y(N
′

t +W −1; �), . . . , y(N ′ −1; �)]T ∈ CNd×1 gather,
respectively, theNt = N

′

t −W +1 and theNd = N
′

d−W +1 sig-
nals received within the training and the data-transmission phases
of the �th block (the first W − 1 samples at the beginning of each
phase are discarded to avoid the overlapping between training and

data). Accordingly, Xt (�) ∈ C
Nt×W and Xd (�) ∈ C

Nd×W

are Toeplitz matrices collecting the training and the data symbols,

Rt = X
H
t (�)Xt(�) andRd = X

H
d (�)Xd (�) are the correspond-

ing correlation matrices (both assumed to be independent of the
block index), the vectors wt (�) ∼ CN (0,σ2wINt) and wd (�) ∼
CN (0,σ2wINd) contain the noise samples.

In the following we address the problem of ML estima-
tion of the channel vector h (�) from the ensemble of L blocks
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Figure 2: Receiver structure.

{yt(�),yd(�)}L�=1 under the constraint (2) and for known rank or-
der r. At the first iteration, as no a-priori information is avail-
able on the information-bearing data Xd(�) (the a-priori LLRs are
λ1[b(i)] = 0 for all code bits b(i)), channel estimation is carried out
from the training signals {yt(�)}L�=1 only, using the knowledge of
the pilot symbolsXt (training-based channel estimation). After the
first channel estimation, equalization and decoding of the L blocks,
the a-priori LLRs {λ1[b(i)]} can be exploited to refine the initial
estimate (soft channel estimation). Namely, the a-priori LLRs are
used to compute the mean value x̄d(i) = E [xd(i)] and the variance
σ2d(i) = E[|∆xd (i) |2], with∆xd (i) = xd (i)− x̄d (i), for every
code symbol xd(i), i = 0, . . . , LN

′

d − 1. We recall that for QPSK
modulation these statistics can be easily obtained as [8]

x̄d(i) =
1√
2

(
tanh

λ1[b(2i)]

2
+ j tanh

λ1[b(2i+ 1)]

2

)
(4)

σ2d(i) = 1− |x̄d(i)|2 (5)

(within the �th block, the quantities (4) and (5) will be indicated
as x̄d(i; �) and σ

2
d(i; �), respectively). The convolution matrix

built from the soft-valued data sequence{x̄d (i; �)} is X̄d (�) =
E[Xd(�)] ∈ C

Nd×W , while ∆Xd (�) = Xd(�) − X̄d (�) is the
matrix obtained from the data estimate errors {∆xd (i; �)}.

Some approximations are needed to perform ML channel es-
timation. We first assume that the information-bearing symbols
{xd(i; �)} are independent and Nd is large enough so that Rd ≈
NdIW and R̄d = X̄

H
d (�) X̄d (�) ≈ IW Ñd (both matrices are con-

stant over the blocks). The parameter Ñd = Nd(1 − σ2d) depends
on the average variance σ2d of the information-bearing symbols:

σ2d =
1

LN
′

d

LN
′

d∑
i=1

(
1− |x̄d(i)|2

)
=

1

LN
′

d

LN
′

d∑
i=1

σ2d(i). (6)

We further assume {∆xd (i; �)} as a stationary white process with
variance σ2d, independent from the noise {w(i; �)}. It follows that
E[∆XH

d (�)∆Xd(�)] = Ndσ
2
dIW . It is worth noticing that Ñd

represents the effective number of known data symbols that can be

used in each block for channel estimation. It is indeed 0 ≤ Ñd ≤
Nd, with Ñd = 0 for missing prior information (λ1[b(i)] = 0) and

Ñd = Nd for perfect prior information (λ1[b(i)] = ±∞).
Based on the assumptions above, the model (3) reduces to{
yt (�) = Xt (�)h (�) +wt (�) , Training

yd (�) = X̄d (�)h (�) +∆wd (�) +wd (�) , Data
(7)

where the soft-valued data X̄d (�) are known and can be treated
as an extension of the training sequence, while ∆wd (�) =
∆Xd (�)h (�) represents an additive noise term, independent from
wd (�) and having variance∆σ

2
w = σ

2
dE[||h(�)||2].

In the following channel estimation will be performed
from (3) under the white Gaussian assumption ∆wd (�) ∼



CN (0,∆σ2wINd) (whiteness holds for diagonal Rh, e.g. for
symbol-spaced delays and Nyquist impulse waveform). Notice
however that the new signal model is not homogeneous, as, due to
the unreliability of the soft-valued training data x̄d (i; �), the input
noise variance σ2w is increased by∆σ

2
w in the signal yd (�).

3.1 Training-based channel estimation

The constrained ML estimate of the channel h (�) from the sig-
nals {yt(�)}L�=1 and for known {Xt(�)}L�=1 is obtained by mini-
mizing the negative log-likelihood function Lt =∑L

�=1 ||yt (�)−
Xt (�)h (�) ||2 under the constraint (2). The optimization yields the
training-based MB estimator [1] that requires the preliminary eval-
uation of L SB estimates obtained by performing an unconstrained
ML estimation within each block.

3.2 Soft-based channel estimation

The constrained ML estimate of h (�) from the signals

{yt(�),yd(�)}L�=1 and for known {Xt(�), X̄d(�)}L�=1 is obtained
by minimizingLs = Lt+γ∑L

�=1 ||yd (�)−X̄d (�)h (�) ||2 under
the constraint (2) and for γ = (1 +∆σ2w/σ

2
w)

−1. Similarly to [1],
it can be shown that the minimizer is the soft MB estimate

ĥMB (�) = R̄
−1/2

P̂R̄
1/2
ĥSB (�) (8)

that is based on the (soft SB) unconstrained estimate

ĥSB (�) = R̄
−1
(
X
H
t (�)yt (�) + γX̄

H
d (�)yd (�)

)
(9)

where we set R̄ = Rt+γR̄d. The estimate P̂ for the projector onto
the channel subspace is obtained from the r leading eigenvectors of
the sample correlation matrix

RMB (L)=
1

L
R̄
1/2

(
L∑
�=1

ĥSB (�) ĥ
H
SB (�)

)
R̄
H/2. (10)

Remark 1. Notice that if the data symbol estimates provided by
the decoder are unreliable (i.e., at the first iterations of the iterative

processing for moderate SNR), it is σ2d ≈ 1, Ñd ≈ 0, X̄d (�) ≈
0, and the soft MB estimate (8) coincides with the training-based
one [1]. On the other hand, for perfect a-priori information (i.e.,
after a large enough number of iterations, provided that the iterative

approach converges) it is σ2d ≈ 0, Ñd ≈ Nd, X̄d (�) = Xd (�) and
therefore the soft estimate equals the training-based estimate that
would be obtained from a training sequence ofNt +Nd symbols.

Remark 2. The MB method is based on the soft SB estimate
(9), which is suboptimal as it is derived under the Gaussian as-
sumption for ∆wd(�). Nevertheless, this approach has some defi-
nite advantages with respect to other channel estimation techniques
combining training and soft-valued data. For instance, consider the
“local” EM estimation (mixing method [4], also equivalent to [3])
applied to the incomplete data {yt (�) ,yd (�)} with missing data
Xd (�) and known parameter Xt. The estimate is the minimizer

of L1 = Lt + Exd [||yd (�) − Xd (�)h (�) ||2] and it can be ob-
tained from (9) by setting γ = 1 and replacing R̄d with E[Rd]. As
highlighted in [4], for Nd � Nt and unreliable soft information
(X̄d (�) ≈ 0) this estimate suffers from an evident bias that might
prevent the iterative receiver to bootstrap. This is not the case of the
method herein proposed, that provides always an unbiased estimate.
A similar unbiased estimate is proposed in [5] as the minimizer of
Ls for γ = 1. The solution is obtained from (9) by setting γ = 1
(the variance of the information-bearing symbols is not taken into
account). It can be shown that the performance of the two estimates
are similar for ∆σ2w � σ2w (γ ≈ 1), but when ∆σ2w and σ

2
w are

comparable (i.e., for large SNR and unreliable prior information)
the soft estimate [5] performs worse than the conventional training-
based SB estimate. This never occurs with the method (9), as it will
be shown analytically in Sec. 4 and by simulation results in Sec. 5.

4. PERFORMANCE ANALYSIS

Let us assume L → ∞ (i.e., perfect knowledge of the temporal

subspace), the estimate error ∆h (�) = ĥ (�)−h (�) for the SB
(∆hSB (�)) and MB (∆hMB (�)) methods can be written as

∆hSB(�) = R̄
−1{XH

t (�)wt(�)+γX̄
H
d (�)[∆wd(�) +wd(�)]}

∆hMB(�) = R̄
−1/2

PR̄
1/2
∆hSB(�)

where P is the true projector onto the temporal subspace

R[R̄1/2G]. Recalling that wt (�), ∆wd (�) and wd (�) are

uncorrelated, it can be shown that the covariance Cov(ĥ) =
E[∆h (�)∆hH (�)] (where averaging is performed over fading and
noise) is

Cov(ĥSB) = σ2wR̄
−1

(11)

Cov(ĥMB) = σ2wR̄
−1/2

PR̄
−H/2

. (12)

The MSE is obtained as MSE=tr(Cov(ĥ)) from (11)-(12) yield-
ing the results in Table 1. The following relationships hold
between then MSE of the training-based estimate (superscript
t), the soft-based estimate and the soft-based estimate for

σ2d = 0 (superscript t+d): MSE
(t+d)
SB ≤MSESB ≤MSE(t)SB,

MSE
(t+d)
MB ≤MSEMB ≤MSE(t)MB. This can be proved by observ-

ing thatRt ≤ R̄ ≤ Rt +Rd.
The MSE expressions simplify for uncorrelated training se-

quences, i.e. for Rt = NtIW and thus R̄ = (Nt + γÑd)IW , as
shown in the third column of Table 1. As expected, in this case the
performance depends only on the ratio between the number of chan-
nel unknowns and the number of effective training symbols within

each block (Nt+ γÑd). The number of unknowns isW for the SB
estimator, while for the MB estimator it is reduced to the number
r of block-dependent amplitudes b(�) [1], as the projector P (as
well as its basisU) is perfectly estimated for L→∞. Table 1 also
shows the performance for two extreme conditions: missing prior
information (i.e., at the first iteration for σ2d = 1); perfect prior in-
formation (i.e., close to the convergence of the iterative approach
for σ2d = 0).

5. SIMULATION RESULTS

The performance for the SB andMBmethods are compared by sim-
ulating the following system. A frame of 4000 randomly chosen
equiprobable information bits is coded by a 4-state convolutional
code with generators (7, 5)o and it is permuted by a random inter-
leaver. The code bits are mapped into 4000 QPSK symbols and
arranged into L = 20 blocks with N ′

d = 200 symbols each. A
training sequence of Nt = 31 QPSK symbols is added in each
block (to avoid border effects a cyclic prefix ofW − 1 symbols is
used yielding N ′

t = 46). The L blocks are then transmitted over
a block-faded Rayleigh channel having r = 6 resolvable paths,
Rα = diag

{
1, 1

2
, 1
4
, 1, 1

2
, 1
4

}
and τ =[0, 1.5, 2.8, 10.5, 11.8, 13]

Table 1: MSE of soft iterative SB and MB estimates.

Estimate Correlated Unc.

from training + soft-valued data (σ2d ∈ [0, 1])
SB σ2w tr[R̄

−1] σ2w
W

Nt+γÑd

MB σ2w tr[(Rt + γR̄d)
−1/2P(Rt + γR̄d)

−H/2] σ2w
r

Nt+γÑd

from training only (σ2d = 1)
SB σ2w tr[R

−1
t ] σ2w

W
Nt

MB σ2w tr[R
−1/2
t PR

−H/2
t ] σ2w

r
Nt

from training + data (σ2d = 0)
SB σ2w tr[(Rt +Rd)

−1] σ2w
W

Nt+Nd

MB σ2w tr[(Rt +Rd)
−1/2P(Rt +Rd)

−H/2] σ2w
r

Nt+Nd
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[samples]. For the MB method the projector P onto the temporal
subspace is estimated from either L = 20 or L→∞ blocks.

Fig. 3 compares the MSE of the soft SB and MB estimates
for varying mutual information I = I{b(i), λ1[b(i)]} between
the code bits b(i) and the a-priori information λ1[b(i)]. Accord-
ing to [10], the a-priori LLR λ1[b(i)] is modelled as Gaussian and
Eb/N0 = 3dB. The simulated MSE values (markers) are com-
pared with the analytical results (continuous lines) of Table 1. It
can be seen that all soft-based methods become more accurate for
increasing I (or, equivalently, for decreasing σ2d), from I = 0
(or σ2d = 1, when only training symbols are used) to I = 1 (or
σ2d = 0, when the whole block of N known symbols is used). The
SB ML method proposed in this paper is also compared with the
other soft-based estimators: mixing method [4], combining method
[4], LS method [5]. All SB methods reach the same accuracy at I
= 1, while for moderate I the SB ML estimator outperforms all
other methods. The effect of the EM estimate bias is evident for
small I. The soft MB estimate outperforms all method reaching a
gain (from Table 1) equal to MSESB/MSEMB ≈ W/r = 4.26dB
with respect to the SB ML method (here it is Rt ≈ NtIW ) and to

MSE
(t)
MB/MSEMB ≈ N/Nt = 7.8dB (for I = 1) with respect to

the training-based MB approach.

Fig. 4 shows the BER performance for the complete iterative
receiver. Fig. 4-a compares the receiver with MB soft channel esti-
mation (for known projector P or L→∞) with the case of known
channel. n = 5 iterations are enough for the MB iterative channel
estimator to approach the performance of known channel. Fig. 4-b
shows the performance of the receiver with SB and MB estimation
after 5 iterations. Both training-based and soft-iterative approaches
are used. We observe that the soft MBmethod outperforms both the
training-based and the soft SB methods. Its performance at the 5th
iteration is close to that obtained for known channel.

6. CONCLUDING REMARKS

This paper proposes the integration of MB channel estimation for
block-fading channels with soft iterative equalization. The MB
method exploits the invariance of the temporal subspace across
blocks and it estimates the channel using the soft statistics fed back
by the decoder. The analytical evaluation of the MSE for the chan-
nel estimate and the simulation results on the BER for the complete
iterative receiver show the benefits of the proposed method.
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