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ABSTRACT 

In Analog to Digital Converters, the sampled values are not 
necessarily sampled in the desired time. Sampling may occur 
before or after the desired time because of using non ideal con-
verters; therefore the output signal of converters contains a 
noise related to this inexact sampling time. In this paper, signal 
to noise ratio according to practical sampling of continuous 
signal will be estimated. For this estimation, we have assumed 
the continuous signal as a band limited, zero-mean real signal 
which is wide sense stationary (wss). Sampling rate is also con-
sidered equal or more than Nyquist sampling rate. It will be 
concluded that what condition should be applied in order to 
have any desirable ratio of signal to sampling noise. 

1. INTRODUCTION 

In the analysis of sampled data in control and communication 
systems, it is usually assumed that the sampling occurs at pre-
cisely known time instants. However, in practice Analogue to 
Digital Converters, ADCs are not perfect and have some speci-
fied tolerance, due to noise and other imperfections in the sam-
pler. The difference in time between the actual sample time and 
the predetermined sample time is called jitter, which introduces 
error into the system and calculations.  
 Problems associated with jitter error have been previ-
ously analyzed either in A/D converters or D/A converters [1-
9]. In some of the previous cases of study which aimed to esti-
mate the signal to sampling noise ratio, we need to have knowl-
edge about either the statistical properties of the input signal or 
probability density function of the jitter error, where having 
such information can be impossible in many cases. In addition 
some estimation is just regarded to the error occurs in the con-
tinuous reconstructed signal from the jittered sampled signal 
and not the error occurs in the discrete sampled signal, itself 
[10], [11].  
 In this paper signal to noise ratio in the sampled sig-
nal, according to inexact practical time-sampling will be esti-
mated. For this estimation, we have only assumed the continu-
ous signal, which is going to be sampled, as a band limited, 
zero-mean real signal which satisfies wide sense stationary 
(wss) characteristics and also the Nyquist sampling rate as-
sumption. Also, we consider the jitter noise as a zero mean, 
white noise that we do not have any information about its prob-
ability density function. In fact we will estimate the signal to 
sampling-noise ratio by considering that our knowledge about 
the input signals and jitter error are limited to the above condi-
tions and we do not have any information about others statisti-
cal properties. By applying mathematical calculations and esti-
mating signal to sampling-noise ratio, a minimum boundary for 

signal to sampling-noise is obtained just as a function of jitter 
variance.   

 
2. PRE CALCULATION 

Here we only want to estimate the noise related to inexact sam-
pling; therefore other noises such as quantization noise [12] will 
not be considered in the calculations, and the converter can be 
assumed as Analog to Discrete Converter.  
 If we consider xc(t) as a real wide sense stationary 
(wss) continuous signal, and xd[n] as a discrete signal which is 
the n-th sample of xc(t) in an ideal converter then [13]: 

xd[n] = xc(nTs) (1), 
where Ts is sampling rate of the converter, which is equal or 
more than Nyquist sampling rate. But there is sampling noise 
related to inexact sampling of practical converter, so (1) will be 
changed to (2) in practical (non ideal) converters: 

x'd[n] = xc(nTs+εn) (2). 
(2) means that there is about εn time difference between the ideal 
output of converter and the practical one in the n-th sampling. 
We call εn, sampling noise which is zero mean white noise and: 

Variance of εn = E(εn
2) = σε2 

(for all integer  n) (3). 
This sampling noise makes output signal of converter to be dif-
ferent from desired one. In another section the necessary calcu-
lations will be done to estimate the ratio of signal to sampling 
noise. 

3. MAIN CALCULATION 

There is a relation between continuous signal and the sampled 
signal which is sampled with rate equal or more than Nyquist 
sampling rate [14]: 
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where: 
xd[k] = xc(kTs) (5), 

and Ts is sampling rate. With applying (t= nTs+εn) in (4) we will 
obtain: 
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(6). 
We will define: 

snn T/εα
∆
=  (7); 

therefore αn is a zero mean white noise with variance (σα2) equal 
to σε2/Ts

2. By applying (7) and (2) in (6) we will have: 
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(8) can be written in the form below: 
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Our main aim to find Signal to Noise Ratio (SNR) which is de-
fined as below: 
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To find 2
Nσ  we need mean of noise or ][nN  [15]: 
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Since xc(t) is a WSS signal, then: 
=+ })({

nnscx nTxE εε  

nallfortnConstanTxE xsc →=η)}({  (19); 
therefore (18) will be changed to below: 

{ } 0][ =−=−= xxxxEnN ηηηη  (20). 
Now we will calculate 2

Nσ  [15]: 
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Again since xc(t) is a WSS signal, we will have: 
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By applying (24) in (23) we will have: 

]}[]['{2}{ 222 nxnxEE ddxxN −+= σσσ  (25) 
 

]}[]['{22 22 nxnxE ddxN −=⇒ σσ  (26). 
We can make ]}[]['{ nxnxE dd  simpler [15]: 
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(27), 
where )( nxR ε  autocorrelation of xc(t). By applying (27) in (26), 
we will obtain: 
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Since ( { } { } { })()()()( 222 ττ +≤+ txEtxEtxtxE ) [15] or in the 

other hand ( 2)0()( xxx RR στ =≤ ), we will conclude from 
(28) that: 

22 4 xN σσ ≤ . (29) 
To make (28) simpler, we need to have estimation 
of )}({ nxRE εε . Since εn is a small value around zero, )( nxR ε  
can be written as bellow [15]: 
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Now we should find
0
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have equations below for )( nxR ε : 
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Now by considering (7) and (10): 
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To make (36) simpler we need to consider (37) which is about 
the function of Sinc: 
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Therefore: 

[ ]

[ ]
⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=−

≠
−

−=⎥
⎦

⎤
⎢
⎣

⎡
−

=

==
∂

+∂

0)3/)(/1(

0
)1(2)(2

)1(

0

)(

22

2222

2

2

nforT

nfor
nTn

nCos
T

T
nSinc

s

s

n

s

s

π

π

εε
ε

ε

 

(38). 
By considering (36), (38) and the fact that, (38) and )( sx kTR  
are even functions (since xc(t) is real; therefore )( sx kTR  gives 

an even function of k.), 
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(39). 
We will apply (39) in (31): 
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(40). 
By considering (7), (40) will be changed as below: 
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(41). 
Now we can find estimation of 2

Nσ , by applying (41) in (28): 
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Since ( { } { } { })()()()( 222 ττ +≤+ txEtxEtxtxE ) [15] or in the 

other hand ( 2)0()( xxx RR στ =≤ ); therefore we will conclude 
from (43) that: 
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(45); 
therefore we can estimate SNR, by applying (45) in (11): 
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(46). 
We also can obtain another inequality for SNR by applying (29) 
in (11): 
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(47). 
Since both (46) and (47) are true, therefore we can have estima-
tion for SNR as below: 
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4. CONCLUSION 

Fig.1 plots Minimum of SNR versus of σα2, according to both 
(46) and (47). Fig.2 also plots Minimum of SNR versus of σα2, 
but according to (49).  
 By concentrating on Fig.1 and Fig.2 it can be under-
stood that when σα2 is larger than 0.4, (47) dominates (46). Also 
for σα2 smaller than 0.1, SNR is certainly greater than zero, that 
means the power of signal is greater than the power of noise. By 
considering (7), σα2 is equal to σε2 / Ts

2 where σε2 is variance of 
sampling error; therefore if variance of sampling error (σε2) is 
smaller than Ts

2 /10 then we can be sure that the power of signal 
is greater than the power of noise, and if variance of sampling 
error (σε2) is smaller than Ts

2/100, then the power of signal is 
more than 10 times greater than the power of noise. 
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Fig.1: Minimum of SNR versus of σα2 according to (46) and (47) 
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Fig.2: Minimum of SNR versus of σα2, according to (49) 
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