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ABSTRACT

A method is presented for estimating dynamic behav-
ior of clock bias of GPS/GNSS signals. By balancing
charge-carrier populations in solar-terrestrial system, a
competitive growth model is introduced to formulate
ionosphere dynamics. The model is adapted under the
constraint of the Volterra’s principle to restore the po-
sitioning residual.

1 INTRODUCTORY REMARKS
Self-locating is the first step for both autonomous guid-
ance and interactive driver support of vehicle systems.
Normally, the location of vehicles can be confined within
roadway area. In practical situations, the location is ‘ab-
solutely’ measured with respect to a coordinate system
then mapped on a properly selected roadway. Thus,
intelligent vehicles, either autonomously navigated or
controlled by human drivers, are supported by well-
structured map and precise positioning devices with a
coordinate system.

The concept of map based self-location has been intro-
duced as an essential part of autonomous mobile robots
and extended to various vehicle navigation systems.
Latest versions of the location devices often invoke
GPS/GNSS signal as coordinate estimate. Through the
matching with ‘digital map’, navigation systems provide
well-structured prediction for the scene to be analyzed
by human drivers and/or computer vision.

For stable maneuvering, the prediction error should
be bounded within the scope of online adaptation pro-
cesses. Available GPS/GNSS systems provide the es-
timation of relative distance between satellites and the
vehicles within typically 3m error as shown in Fig. 1.
The accuracy is sufficient for selecting a roadway on an
exact map. However, aforementioned positioning error
may yield serious distortion in predicted scene. Due to
the error of practical maps, furthermore, selected lane
maybe directed to wrong roadways. For stable maneu-
vering, final positioning error should be reduced to one
tenth of current value. In this paper, the estimation
of GPS/GNSS residual is considered based on solar-
terrestrial dynamics.

Figure 1: Positioning and Mapping by GPS/GNSS
Measurements of longitude-latitude bias are ploted in a
circle with 0.1 sec. radius on the horizontal plane (upper
right) and mapped on a scene (upper left). The bias
level exhibits periodic behavior (lower window).

2 GPS/GNSS RESIDUAL
By detecting a set of satellite located at p∗i , i =
1, 2, . . . , n, with respect to a coordinate, positioning sys-
tems computes 3D position of a receiver p based on the
following relative distance

ρ̃i = ρi + τ + ri, (1)

where ρi = |p∗i − p| and ri is measurement error.
In Eq. (1), geometrically defined distance ρi is shifted
by τ denoting equivalent distance associated with the
clock bias. By identifying the bias with a ‘constant-on-
average’, i.e.,

τ̇ = v̇t, (2)

where v̇t denotes white Gaussian process, the extended
Kalman filter has been applied to estimate the posi-
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Figure 2: Solar-Terrestrial Dynamics

tion r based on noisy information {ρ̃i} [1]. However, the
assumption (2) often fails due to periodic bias. For in-
stance, Fig. 1 demonstrates that the residual indicates
the variation of 1 – 3m amplitude (white line) with ap-
proximately 10min period.

In what follows, we consider dynamic estimation of
the positioning bias τ within the framework of solar-
terrestrial system.

3 DYNAMIC IONOSPHERE MODEL
Excited by mainly solar energy, the atmosphere exhibits
polarized structure with positive electrosphere sand-
wiched between upper free electrons and normally neg-
ative ground as shown in Fig. 2. The ionization pro-
cess in Kenneley-Heaviside layer is activated by energy
transmission via solar radiation, solar wind and cosmic
ray. Excited atmosphere is expanded to ‘inflate’ the
ionization process. Simultaneously, positive particles of
molecular or larger scale are generated in the lower lay-
ers. Since the charge-carrier separation distance corre-
sponds to only a few diameters of the particles in the
upper layer of ionosphere [2], generated ions are consid-
ered to be diffused as the “predator” of free electrons.
Thus, the population of free electron in the upper layer
tends to an equilibrium via the following dynamics.

1
e−
de−

dt
= a(1 − k+n+). (3a)

Solar radiation reached at the surface of the earth evokes
ascending current. The vertical temperature distribu-
tion is maintained by the radiation and relaxed through

the nocturnal radiation. The humidity in the ascending
air is condensed to yield thunder cloud: a “generator” of
positive ions to the bottom layer of the ionosphere. De-
spite downward leakage, thus, the ionization level of the
lower electrosphere is maintained by upward ion supply.
In other wards, net downward leakage must be reduced
by the ionization loss to balance charge-carrier popula-
tions. Hence, we have the following population dynam-
ics for the predator ions.

1
n+

dn+

dt
= −b(1 − k−e−). (3b)

4 VOLTERRA’S PRINCIPLE
Under the Predator-Prey scheme (3), population pa-
rameters (e−, n+) jointly maintain ‘averaging constant’
state exactly. Let t0 and t1 be start and terminal times
satisfying n+(t1) = n+(t0). Since

∫ t1

t0

d

dt
(log n+)dt+

∫ t1

t0

b(1 − k−e−)dt = 0,

by the definition of t0 and t1, we have the Volterra’s
principle stated as follows.

1 − k−e− = 0, (4a)

e− =
1

t1 − t0

∫ t1

t0

e−(t)dt. (4b)

This implies that the level of positioning bias τ ∼ e−

can be predicted in terms of the system parameter k−
governing the predator dynamics (3b).

For identifying dynamic behavior of inaccessible n+,
let Ft be the Borel field generated by the information
{(e−s , n+

s ), s ≤ t} and define the following stochastic dif-
ferentials with drift terms α(n+) = a(1 − k+n+) and
β(e−) = b(1 − k−e−).

dξ = −dn
+

n+
= β(e−)dt+Gdw, (5a)

dλ =
de−

e−
= α(n+)dt+Rdv, (5b)

where dw and dv are the increments of mutually inde-
pendent Wiener processes. Noticing the combination of
Eqs. (5a) with (4) implies

ξt1 − ξt0 = −
∫ t1

t0

Gdws,

we have a stochastic version of the Volterra’s principle
as a ‘periodic’ martingale {ξt,Ft, 0 ≤ t} satisfying

E{ξs+m(t1−t0)|Fs} = ξs m = 0, 1, 2, . . . , (6)

with probability one. Furthermore, noticing the asso-
ciation

λ ∼ e− ∼ β(e−) ∼ n+ ∼ ξ,
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Figure 3: Intrinsically Stable Stochastic System
Mutually constrained (e−, n+) populations generates in-
creasing information Ft to restore ionosphere dynamics.

we can exploit the random variable λ as an observation
of ξ (Fig. 3). Thus for the control parameter of the
ionosophere dynamics, ξ, we have the following

Proposition 1 For the the Gaussian random variable
ξ under Gaussian observation λ, the expectation and co-
variance are given by

E
{
dξ

∣∣ Ft, dλ
}
− βdt = σξλσ

−1
λλ (dλ− αdt),

E
{

(dξ − βdt)2
∣∣ Ft, dλ

}
= (σξξ − σξλσ−1

λλσλξ)dt,

(7)

where σ(·)(·) denotes the covariance of d(·)d(·).

In what follows, the periodic martingele (6) and update
rule (7) are applied to parameter estimation and Kalman
filtering, respectively.

5 STOCHASTIC GROWTH MODEL
Consider online estimation of inaccessible predator n+

based on the observation e− available as the positioning
residual τ̃ . For this purpose, let the population of the
prey electron e− be observed via sampling of position-
ing bias τ . Since the population of the predator n+ de-
pends on unknown level e−, the evaluation of e− results
in the estimation of n+ based on a complex predator-
prey interaction. In the nondeterministic predator-prey
system (5) define

dzt = dn+,

dyt = adt− de−

e−
.

Then we have the linear stochastic system consisting of
dynamics

dzt = Atztdt+Gtdwt, (8a)

System Model
dn+ = −b(1 − k−e−)n+dt+Gn+dw(

adt− de−

e−

)
= ak+ · n+dt+Rdv

❄
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Figure 4: Kalman Filter for Nonlinear Growth Model

with the observation channel

dyt = Hztdt+Rdvt, (8b)

and the generator of as-is model.

dAt

b+At
= adt− dyt. (8c)

In Eq. (8a), the intensity of the disturbance to zt is mag-
nified in accordance with the population n+.

Gt = Gn+.

This implies that the linear system (8) is subjected to
state dependent noise.

6 FILTERING OF SOLUTION PROCESSES
Consider the scheme for estimating the population of
the predator n+ based on noisy observation of e−. The
problem is to design a dynamical system to generate
the minimum variance estimate of zt driven by the ob-
servation dyt as illustrated in Fig. 4. By combining the
stochastic model (8) with update rule (7), we have

Proposition 2 Let Gt be a positive stochastic process
adapt to Ft. Then the state estimate ẑt for the nonlinear
growth system (8) is generated by the following dynamics

dẑt = Atẑtdt+Ktdνt, (9a)

dνt = dyt −Hẑt, (9b)

with the filter gain given by

Kt =
ptH

R2
,

where pt is the solution to the following Riccati equation

dpt
dt

= 2Atpt +G2
t −

H2

R2
p2t ,



Figure 5: Filtering Results: Simulation

and νt is a version of Wiener process, designated by in-
novation process. By the evaluation Gt = Gẑt, resulted
estimate satisfies ẑt > 0.

Figure 5 illustrates the behavior of the estimate ẑt ∼
n+ based on noisy observation yt ∼ e−. As shown in
this figure, the mechanism (9) generates an acceptable
version of stochastic population process (e−, n+) even
through considerably corrupted channel successfully.

7 ADAPTATION PROCESSES
Following the Volterra’s principle (4), the system param-
eter k− and observation sensitivity k+ should satisfy the
following constraints.

k−e
− → 1,

k+n
+ → 1.

By adapting (k−, k+)-parameter, the population dy-
namics (3) is updated by the observation.

Proposition 3 By updating the parameter (k+, k−) fol-
lowing

dk̂−
dt

= κ−ẽ
−(1 − k̂−ẽ−), (10a)

dk̂+
dt

= κ+ẑt(1 − k̂+ẑt), (10b)

with positive gain (κ−, κ+), the Kalman filter (9) is
adapted to observation dyt ∼ τt. In the scheme (10),
ẽ− is simulated via the following observer.

dẽ−

dt
= α(1 − k̂+ñ+)ẽ− + κe(τt − ẽ−), (11a)

dñ+

dt
= −β(1 − k̂−ẽ−)ñ+ + κn(ẑt − ñ+), (11b)

based on the record of clock bias τt.

(a) Initial Estimation

(b) Updated Estimation

Figure 6: Filtering Results of a GPS/GNSS Data
Based on themagnitude of positioning error (yt, white),
unknown population n+ is estimated (ẑt, black).
Through the adaptation of interaction parameters
(k̂−, k̂+), the estimate of the clock bias (pink), converges
to the measurement (b).

8 EXPERIMENTS
The GPS/GNSS residual estimation system was imple-
mented based on Eqs. (9), (10) and (11) with a = b ∼
1/(t1 − t0) where t1 and t0 are determined to satisfy
a stochastic constraint Eq. (6). Examples of estimation
results are displayed in Fig. 6 where τ is assumed to be
observed as the residual indicated in Fig. 1. In these ex-
periment, 1446 samples of positioning data were applied
iteratively to yield initial results (a) and the results by
the second iteration (b). As shown in Fig. 6, the esti-
mation system restore GPS/GNSS bias dynamically. In
addition, it is shown that a couple of t1 − t0 period is
sufficient for adapting the estimator to ionosphere state.

9 CONCLUDING REMARKS
A charge-carrier balancing model in ionosphere was ap-
plied to the estimation of GPS/GNSS residual. The
model is adapted under the constraint of the Volterra’s
principle to restore the positioning error. Estimation
system was verified to restore positioning bias through
experiments.
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