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ABSTRACT
We provide a non-iterative channel impulse response (CIR) estima-
tion algorithm for communication systems which utilize a period-
ically transmitted training sequence within a continuous stream of
information symbols. The non-iterative channel estimate is an ap-
proximation to the Best Linear Unbiased Estimate (BLUE) of the
CIR, achieving almost similar performance, with much lower com-
plexity. We first provide a formulation of the received data and
correlation processing with the adjacent symbol correlation taken
into account, and we then present the connections of the correlation
based CIR estimation scheme to the ordinary least squares CIR es-
timation, and the approximate BLUE CIR estimation. Simulation
results are provided to demonstrate the performance of the novel
algorithms for 8-VSB ATSC Digital TV system.

1. INTRODUCTION

For the communications systems utilizing a periodically transmit-
ted training sequence, least-squares (LS) based channel estimation
or the correlation based channel estimation algorithms have been
the most widely used two alternatives [1]. Both methods use a
stored copy of the known transmitted training sequence at the re-
ceiver. However the accuracy of most channel estimation schemes
is degraded due to the baseline noise term which occurs due to the
correlation of the stored copy of the training sequence with the un-
known symbols adjacent to transmitted training sequence, as well
as the additive channel noise [1, 10]. In the sequel, we provide
(semi-blind) approximate Best Linear Unbiased Estimate (a-BLUE)
channel estimator for communication systems using a periodically
transmitted training sequence [3, 8]. Although the examples fol-
lowing the derivations of the a-BLUE channel estimator are drawn
from the ATSC digital TV 8-VSB system [2], to the best of our
knowledge it could be applied with minor modifications to any dig-
ital communication system with linear modulation which employs
a periodically transmitted training sequence. The novel algorithm
presented in the sequel is targeted for the systems that are desired
to work with channels having long delay spreads Ld ; in particular
we consider the case where (NT + 1)/2 < Ld < NT , where NT is
the duration of the available training sequence. For instance the
8-VSB digital TV system has 728 training symbols, whereas the
delays spreads of the terrestrial channels have been observed to be
at least 400-500 symbols long [6, 7, 8]. In addition many channels
exhibit a sparse characteristic. In order to exploit the sparseness of
the channel we formulate a Constant False Alarm Rate (CFAR) type
detector to detect the channel taps which are non zero.

2. OVERVIEW OF DATA TRANSMISSION MODEL

The baseband symbol rate sampled receiver pulse-matched filter
output is given by

y[n] ≡ y(t)|t=nT = å
k

Ikh[n− k]+ n [n]

= å
k

Ikh[n− k]+ å
k

h [k]q∗[−n+ k], (1)

where Ik =

{
ak, 0 ≤ k ≤ N −1
dk, N ≤ n ≤ N′−1,

}
∈A ≡ {a 1,· · · , a M} ⊂C

1

is the M-ary complex valued transmitted sequence, and {ak} de-
note the first N known training symbols within a frame of N′ sym-
bols; n [n] = h [n]∗q∗[−n] denotes the complex (colored) noise pro-
cess after the (pulse) matched filter, with h [n] being a zero-mean
white Gaussian noise process with variance s 2

h per real and imagi-

nary part; h(t) = q(t)∗c(t)∗q∗(−t) =
L
å

k=−K
ck p(t − t k) is the com-

plex valued impulse response of the composite channel, and p(t) =
q(t) ∗ q∗(−t) is the convolution of the transmit and receive filters
where q(t) has a finite support of [−Tq/2,Tq/2], and the span of the
transmit and receive filters, Tq, is an even multiple of the symbol
period T ;{ck} ⊂C

1 denote complex valued physical channel gains,
and {t k} denote the Time-Of-Arrivals (TOA). c(t) is assumed to
be a static inter-symbol interference (ISI) channel, at least through-
out the training period. The symbol rate sampled composite CIR
h[n], can be written as h = [h[−Na], · · · ,h[−1],h[0],h[1], · · · ,h[Nc]]

T

where Na and Nc denote the number of anti-causal and causal taps
of the channel, respectively, and Ld = (Na + Nc + 1)T is the delay
spread of the channel (including the pulse tails). The matched filter
output which includes all the contributions from the known training
symbols (including the adjacent random data) is

y[−Na:N+Nc−1] = Ah+Dh+Qh [−Na−Lq:N+Nc−1+Lq], (2)

= Ah+Hd+Qh [−Na−Lq:N+Nc−1+Lq], (3)

where D=T {[0,· · ·,0︸ ︷︷ ︸
N

,dN ,· · ·,dNc+Na+N−1]
T,[0,d−1,· · ·,d−Nc−Na]}, A =

T {[a0, · · · ,aN−1,0, · · · ,0︸ ︷︷ ︸
Na+Nc

]T , [a0,0, · · · ,0︸ ︷︷ ︸
Na+Nc

]}, where A is a Toeplitz

matrix of dimension (N + Na + Nc) × (Na + Nc + 1) with first
column [a0,a1, · · · ,aN−1,0, · · · ,0]T , and first row [a0,0, · · · ,0],
and D is a Toeplitz matrix which includes the adjacent un-
known symbols, prior to and after the training sequence. q =
[q[+Lq], · · · ,q[0], · · · ,q[−Lq]]

T is the receiver pulse matched filter,

and Q =




qT 0 · · · 0
0 qT · · · 0
.
.
.

.

.

.
. . .

.

.

.
0 0 · · · qT


 and

H = H ST , (4)

h̄ = [h[Nc],· · · ,h[0],· · · ,h[−Na]]
T = Jh, (5)

J =




0 · · · 0 1
0 · · · 1 0
.
.
.

.

.

.
.
.
.

1 0 · · · 0




(Na+Nc+1)×(Na+Nc+1)

(6)



H =




h̄
T 0 · · · 0
0 h̄

T
· · · 0

.

.

.
.
.
.

. . .
.
.
.

0 0 · · · h̄
T




(N+Nc+Na)×(N+2(Na+Nc))

(7)

and d = Sd̃, or equivalently d̃ = ST d, where

d̃ = [d−Nc−Na , · · ·,d−1,01×N ,dN , · · ·,dN+Nc+Na−1]
T (8)

d = [d−N−Na , · · · ,d−1,dN , · · · ,dN+Nc+Na−1]
T (9)

S =

[
INa+Nc 0(Na+Nc)×N 0(Na+Nc)

0(Na+Nc) 0(Na+Nc)×N INa+Nc

]
(10)

where S is (2(Nc+Na))× (N+2(Na+Nc)) dimensional selection
matrix which retains the random data, eliminates the N zeros in the
middle of the vector d̃. where h̄ is the time reversed version of h
(re-ordering is accomplished by the permutation matrix J), and H
is of dimension (N + Na + Nc)× (2(Nc+Na)) with a “hole” inside
which is created by the matrix S.

3. APPROXIMATE BLUE CIR ESTIMATION

For comparison purposes we first provide the well known correla-
tion and ordinary least squares based estimators, where correlations
based estimation is denoted ĥu (the subscript u stands for the un-
cleaned CIR estimate) and is given by

ĥu =
1

ra[0]
AHy[−Na:N+Nc−1], (11)

with ra[0] =
N−1
å

k=0
‖ak‖

2, and the ordinary least squares CIR estimate

is denoted by ĥc (the subscript c stands for the cleaned CIR esti-
mate) and is given by

ĥc = (AHA)−1AHy[−Na:N+Nc−1], (12)

where “cleaning” is accomplished by removing the known side-
lobes of the aperiodic correlation operation which is accomplished
in (11).

We denote the two terms on the right side of Equation (3) by
v = Hd +Qh [−Na−Lq:N+Nc−1+Lq]. Hence we rewrite (3) as

y[−Na:N+Nc−1] = Ah+ v. (13)

By noting the statistical independence of the random vectors d and
h , and also noting that both vectors are zero mean, the covariance
matrix, Kv of v is given by

Cov{v} = Kv ≡
1
2

E{vvH} =
Ed

2
HHH + s 2

h QQH , (14)

where Ed is the energy of the transmitted information sym-
bols, and equals to 21 if the symbols {dk} are chosen from
the set {±1,±3,±5,±7}. For the model of (13) the general-
ized least squares objective function to be minimized is JGLS(h) =(
y[−Na:N+Nc−1]−Ah

)H
K−1

v

(
y[−Na:N+Nc−1]−Ah

)
Then the generalized

least-squares solution to the model of (13) which minimizes the ob-
jective function of JGLS(y) is given by

ĥK = (AHK−1
v A)−1AHK−1

v y[−Na:N+Nc−1]. (15)

The estimator of (15) is called the best linear unbiased estimate
(BLUE) [9] among all linear unbiased estimators if the noise co-
variance matrix is known to be Cov{n } = Kn . The problem with
Equation (15) is that the channel estimate ĥK is based on the co-
variance matrix Kv, which is a function of the true channel impulse

response vector h as well as the channel noise variance s 2
h . In ac-

tual applications the BLUE channel estimate of Equation (15) can
not be exactly obtained. Hence we need an iterative technique to
calculate generalized least squares estimate of (15) where every it-
eration produces an updated estimate of the covariance matrix as
well as the noise variance. Without going into the details, a simpli-
fied version of the iterations, which yield a closer approximation to
the exact BLUE CIR estimate after each step, is provided in [8].

Alternatively one may achieve nearly the same quality as the
results produced by the algorithm described in [8] while at the same
time requiring much less computational complexity (i.e., requiring
about the same number of multiplications necessary to implement
Equation (12)) and having storage requirements similar to that of
Equation (12). The initial least squares estimation error can be re-
duced by seeking an approximation in which it is assumed that the
baseband representation of the physical channel c(t) is distortion-
free (no multipath); that is c(t) = d (t) which implies

h(t) = p(t)∗ c(t) = p(t). (16)

Thus we can assume that our finite length channel impulse response
vector can be approximated by

h̃ = [0,· · · ,0︸ ︷︷ ︸
Na−Nq

, p[−Nq],· · · , p[0],· · · , p[Nq]︸ ︷︷ ︸
raised cosine pulse

,0,· · · ,0︸ ︷︷ ︸
Nc−Nq

]T (17)

with the assumptions of Na ≥ Nq and Nc ≥ Nq, that is the tail
span of the composite pulse shape is well confined to within the
assumed delay spread of [−NaT,NcT ]. Then the approximation
of (17) can be substituted into Equations (4-10) to yield an ini-
tial (approximate) channel convolution matrix H̃ and is given by
H̃ = H̃ ST where H̃ is formed as in Equation (7) with ¯̃h = Jh̃.
We can also assume a reasonable received Signal-to-Noise (SNR)
ratio measured at the input to the matched filter which is given

by SNR =
Ed‖(c(t)∗q(t))|t=nT ‖

2

s 2
h

=
Ed‖q‖2

s 2
h

.For instance we can assume

an approximate SNR of 20dB yielding an initial noise variance of

˜s 2
h =

Ed‖q‖2

100 . Then combining H̃ and ˜s 2
h we can pre-calculate the

initial approximate covariance matrix where the covariance matrix
of the approximate channel is given by

K̃v(H̃) =
1
2
EdH̃H̃H

+ ˜s 2
h QQH , (18)

which further leads to the initial channel estimate of

ĥK̃ =
(

AH[K̃v(H̃)]−1A
)−1

AH [K̃v(H̃)]−1

︸ ︷︷ ︸
pre-computed and stored

y[−Na:N+Nc−1]. (19)

Equation (19) is the resulting a-BLUE CIR estimate. The
key advantage of the a-BLUE method is that the matrix(
AH [K̃v(H̃)]−1A

)−1
AH [K̃v(H̃)]−1 is constructed based on the ini-

tial assumptions that the receiver is expected to operate, and can be
pre-computed and stored in the receiver. By using the pre-stored

matrix
(
AH [K̃v(H̃)]−1A

)−1
AH [K̃v(H̃)]−1 as in Equation (19) we

obtain a CIR estimate with much lower computational complexity
than the BLUE algorithm.

3.1 Analysis of Baseline Noise and CFAR Thresholding

The channel estimates ĥc or ĥK̃ have contributions due to unknown
symbols prior to and after the training sequence, which are ele-
ments of the vector d, as well as the additive channel noise. These
contributions due to unknown symbols and channel noise is called
baseline noise, and we can give an expression which summarizes
the baseline noise for two different estimators of Equations (12),
and (19). The general channel estimate can be written in the form

ĥ = h+ x = h+B
(

Hd +Qh [−Na−Lq:N+Nc−1+Lq]

)
(20)



where the baseline noise vector x is defined by

x = B
(

Hd +Qh [−Na−Lq:N+Nc−1+Lq]

)
(21)

and the matrix B takes one of the two following different forms
depending on the estimator used:

B =

{ (
AHA

)−1
AH , for ĥc(

AH[K̃v(H̃)]−1A
)−1

AH [K̃v(H̃)]−1, for ĥK̃

(22)

Although we can derive the exact probability distribution of the
baseline noise term, we can alternatively make the assumption of
normality (having Gaussian distribution) of the baseline noise. This
assumption can be asserted by invoking the central limit theorem[4].
The baseline noise vector x has covariance matrix Kx = Cov{x }

Kx = B(
Ed

2
HHH + s 2

h QQH)BH = BKvBH (23)

where Kv is given in (14), and we make the approximation

x ∼ N (0,B(
Ed

2
HHH+s 2

h QQH)BH) = N (0,BKvBH) (24)

by invoking the central limit theorem, where B takes one of the
appropriate forms as displayed in Equation (22).

We also provide the probability distribution of ‖x k‖
2 where

subscript k denotes the kth element of the baseline noise vector
x = [x 1, . . . , x Na+Nc+1]

T . Based on (24) we can show that x k has
a Gaussian marginal distribution with zero mean and variance[4]

s 2
x k
≡

1
2

E{x kx ∗
k } = 1T

k BKvBH1k (25)

that is x k = 1T
k B(Hd +Qh [−Na−Lq:N+Nc−1+Lq]), and

x k ∼ N (0,1T
k BKvBH1k︸ ︷︷ ︸

s 2
x k

), (26)

where B takes one of the appropriate forms as displayed in Equa-
tion (22), and 1k = [0, . . . ,0︸ ︷︷ ︸

k−1

,1,0, . . . ,0]T is the vector of zeros of

appropriate dimension with a 1 at the kth position.
Now we state an important fact about the probability distri-

bution of the square-norm of the complex Gaussian random vari-
ables [11]. Let x = x r + jx q be a complex valued random vari-
able, with statistically independent real and imaginary parts x r and
x q. Given that x is Gaussian with 0 mean and variance s 2

x =

s 2
x r

= s 2
x q

= 1
2 E{x x ∗}, the random variable defined by Z = ‖x ‖2 =

x 2
r + x 2

q is exponentially distributed, and its density is given by

pZ(z) =





1

2s 2
x

e
− z

2s 2
x , r ≥ 0

0, r < 0.
(27)

Although it is apparent that the real and imaginary parts of the base-
line noise x k are not statistically independent, for the sake of obtain-
ing a simple thresholding rule and for the special case of Digital TV
system the correlation can be shown to be small, we will proceed as
if the real and the imaginary parts of x k are uncorrelated. With this
simplified assumption ‖x k‖

2 is an exponentially distributed random
variable with parameter 2s 2

x k
, and the density function is

p‖x k‖2(r) =





1

2s 2
x k

e
− r

2s 2
x k , r ≥ 0

0, r < 0.
(28)

where s 2
x k

is defined by Equation (25).
Right after obtaining a channel estimate, prior to using that

channel estimate for noise variance, s 2
h , calculation and prior to

building the channel convolution matrix H, the baseline noise has to
be cleaned from the channel estimate. This cleaning can be achieved
via thresholding. Previously we have used a fixed thresholding al-
gorithm [6] to get rid of the baseline noise. We have observed that
there can be significant performance loss if a fixed thresholding is
applied at every iteration. This performance loss is inevitable due
to getting rid of significant amount of pulse tails embedded in the
channel impulse response while getting rid of the baseline noise. To
overcome this problem we propose constant false alarmrate (CFAR)
based thresholding, and the threshold calculation is based on the
approximate statistical distribution of the baseline noise which is
already provided in (26).

Recall that the kth tap of the channel estimate vector can be
expressed in the form

ĥk = hk +1T
k B

(
Hd +Qh [−Na−Lq:N+Nc−1+Lq]

)

︸ ︷︷ ︸
x k

, (29)

and x k has a Gaussian distribution with zero mean and variance
s 2

x k
= 1T

k BKvBH1k where B takes one of the appropriate forms as

displayed in Equation (22), and the random variable ‖x k‖
2 is as-

sumed to have exponential distribution with parameter 2s 2
x k

.

The problem of deciding whether the kth tap estimate ĥk is a
zero tap or not can be formulated as a simple hypothesis testing
problem. That is we consider

H0 : ĥk = x k, (30)

H1 : ĥk = hk + x k; (31)

where under H0 the hypothesis is that the kth channel tap is actually
zero and we are observing only baseline noise, and under H1 the
hypothesis is that the channel tap is non-zero, and we are observ-
ing (non-zero) channel tap plus the baseline noise. We have shown
that the probability distributions of the kth channel tap under each
hypothesis is given by H0 : ĥk ∼ N (0, s 2

x k
), H1 : ĥk ∼ N (hk, s 2

x k
).

We can come up with different decision rules on how to threshold
the channel estimate ĥ, however we choose to pursue CFAR based
thresholding. False alarm probability based decision rule is cho-
sen so that the resulting threshold rule does not require any a priori
knowledge of the distribution of the hypothesis H1, it is solely based
on H0. False alarm rate is the probability of choosing H1 when H0
is true. Our decision rule will be in the form of

set ĥ(th)
k =

{
0, if ‖ĥk‖

2 < e k
ĥk, otherwise.

(32)

Based on the rule of (32) the false alarm rate, denoted by pFA is
given by

pFA = Pr{‖ĥk‖
2 ≥ e k|H0 is true } =

¥∫

e k

1

2s 2
x k

e
− r

2s 2
x k dr = e

−
e k

2s 2
x k . (33)

For the given level of false alarm probability pFA the threshold e k is

e k = −2s 2
x k

ln(pFA) (34)

where s 2
x k

is given by (25).
Although we end up with a very simple expression for the

threshold of Equation (34), which should be applied to the chan-
nel estimate as in (32), we still have the problem of not knowing
the true covariance matrix B( 1

2 EdHHH + s 2
h QQH)BH and the kth



diagonal element which we have denoted by s 2
x k

. We can only have

an estimate ŝ 2
x k

available to be used in Equation (34). Thus it is

natural to see some performance loss due to using the estimate ŝ 2
x k

in place of the true variance as will be shown in the simulations.
Indeed the thresholding step is going to be incorporated into the it-
erations of the channel estimation with covariance matrix updated
at every iteration. Once the covariance matrix is updated at every
iteration we would have a new, and presumably better, threshold e k

since we will get a better estimate ŝ 2
x k

at every iteration.

4. SIMULATIONS

We considered an 8-VSB [2] receiver with a single antenna. 8-VSB
system has a complex raised cosine pulse shape [2]. The CIR we
considered is given in Table 1. The phase angles of individual paths
for all the channels are taken to be arg{ck} = exp(− j2p fct k), k =

−1, · · · ,6 where fc = 50
T and T = 92.9nsec. The simulations were

run at 28dB Signal-to-Noise-Ratio (SNR) measured at the input
to the receive pulse matched filter, and it is calculated by SNR =
Ed‖{c(t)∗q(t)}t=kT ‖

2

s 2
h

. Figure 1 shows the simulation results for the

test channel provided in Table 1. Part (a) shows the actual CIR; part
(b) shows the correlation based CIR estimate, of Equation (11) ĥu;
part (c) shows the ordinary LS based CIR estimate of Equation (12)
ĥc; part (d) shows the approximate BLUE CIR estimate of Equa-
tion (19) with an assumed SNR of 20dB; part (e) shows the BLUE
based CIR estimate of Algorithm 1, after the first iteration, ĥK [1],
where we used CFAR based thresholding with pFA = 10−5; part (f)
shows the ideal BLUE case for which the true covariance matrix
Kv is known. Part (f) provides a bound for the rest of the BLUE
algorithm. We note superior performance of the BLUE algorithm
even after the first iteration, as compared to the correlation based
and ordinary least squares based CIR estimation schemes. However
iterative BLUE CIR estimation algorithm is computationally very
demanding, thus in many applications the approximate BLUE, as
shown in part (d), might be sufficiently acceptable as an initial es-
timate. The performance measure is the normalized least-squares

error which is defined by ENLS =
‖h−ĥ‖2

Na+Nc+1 . Approximate BLUE
significantly outperforms the ordinary least squares CIR estimation,
but it has virtually identical computational complexity and storage
requirement.
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Figure 1: Part (a) shows the real part of the actual CIR; part (b)
shows the correlation based CIR estimate of Equation (11) ĥu; part
(c) shows the LS based CIR estimate of Equation (12) ĥc; part (d)
shows the approximate BLUE CIR estimate of Equation (19) with
an assumed SNR of 20dB; part (e) show the BLUE based CIR es-
timate of Algorithm 1, after the first iteration, ĥK [1]; part (f) shows
the ideal BLUE case for which the true covariance matrix Kv is
known, which provides a bound for the rest of the estimators.
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