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ABSTRACT
A novel algorithm for head-tracking based on stereo is

presented in this paper. Employing stereo vision makes the
tracker robust to many factors such as clutter, color and light-
ing variations, that affect contemporary head trackers. The
head is modeled as an ellipse and tracking is performed on
the foreground obtained by modeling depth. This is facili-
tated by using stereo vision. Further, we present a simple
head size estimation technique that is critical for modeling
considerable motion by the subject. The results obtained
demonstrate the robustness of the head tracker and the accu-
racy of the head-size estimation technique. This would find
extensive use in speaker tracking in smart rooms.

1. INTRODUCTION

Head tracking has been an area of active research over the
years. This involves addressing different factors such as ro-
tation, pose, sensitivity to background clutter, effect of light-
ing variations and erratic movements by the subject, besides
localizing the human head . Several techniques based on in-
tensity edges, skin color information and pattern classifiers
have been proposed and successfully implemented address-
ing the above issues.

Stereo vision can be used in negating the shortcomings of
contemporary head trackers. Background clutter and color
that affect the performance of intensity edge-based track-
ers [2] and skin color based trackers [1, 3] do not affect
stereo. Stereo based trackers also perform well in vary-
ing light conditions [4]. Besides, availability of commercial
stereo-cameras has encouraged the use of stereo vision for
tracking. Stereo also enables localization in 3-D space that
would find extensive use in smart-room based applications.
We intend using the proposed algorithm in consonance with
acoustic localization techniques for speaker tracking. Their
utility would be enhanced in challenging acoustically envi-
ronments, where localization based on audio alone is less ef-
ficient. Stereo has been used as one of the modes in a multi-
modal head tracker in [5]. Very little work has been done in
using stereo alone for head tracking. The stereo based head
tracker proposed in [6] fails when the subject does not face
the camera.

In this paper, we present a robust head tracker based on
stereo alone. A correlation based stereo algorithm is used
to yield disparity images, which are used for further track-
ing. A background subtraction scheme, modeling depth as
proposed in [6], is used to yield the foreground that contains
the region of interest. We then present a tracking algorithm
that models the head as a 2-D ellipse and assumes constant
velocity of motion of the subject as in [2]. In addition, a
simple head size estimation technique incorporating the dis-
parity values is presented and used for tracking. This would

find use in human-computer interfaces and biometric person
authentication.

The paper is organized as follows: The stereo algorithm
and the background subtraction scheme used are presented
in Section 2. Section 3 comprises of the head tracking algo-
rithm, with the head size estimation explained in detail. The
experimental results and a discussion on them are presented
in Section 4. A conclusion is presented in Section 5.

2. STEREO AND SEGMENTATION

Correlation based correspondence algorithms involve the
correspondence of intensity values between a stereo pair of
images. The task involves obtaining the best match for each
pixel of an image on the other corresponding image. As indi-
vidual intensity values have many potential matches, blocks
of data or windows are used. The disparity images thus ob-
tained have the relative depth information embedded in them.
These images become highly unreliable for those areas in the
image devoid of texture. This issue needs to be addressed,
as the disparity images are subject to segmentation before
tracking. Other demerits include the over-reliance on win-
dow length and its inability to model depth discontinuities.
These though, do not have a direct impact on the performance
of the tracker, as indicated in Section 4. Several real time sys-
tems have been developed using this algorithm [10], and this
motivates our choice of it over other techniques despite its
drawbacks. The disparity images obtained are segmented as
explained below.

The foreground segmentation technique used is one of
modeling depth as proposed in [6]. Every pixel in the back-
ground disparity image is modeled as a univariate Gaussian
with mean m and standard deviation s . The mean m i, j and
standard deviation s i, j for each pixel in the disparity image
Di, j are obtained using equations (1) and (2).

m i, j =
1
N

N

å
k=1

Di, j(k) (1)

s i, j =

√

1
N −1

N
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k=1

(Di, j(k)− m i, j)2 (2)

N is the number of background images used to obtain
the model. For well-textured regions in the background im-
ages, the disparity values are reliable. Thus, ideally, the mean
would be the be the pixel’s disparity value and the standard
deviation would be zero. Even otherwise, the standard devia-
tion would be a small value and the mean close to the images’
disparities. Thus, the foreground can be defined as those pix-
els whose disparity exceeds their mean by at least a stan-
dard deviation. A pixel Di, j having a disparity greater than



Figure 1: Top left: Test image used for segmentation. Top
right: Corresponding disparity image (histogram equalized
for better viewing). Bottom right: Binary image after con-
nected components. Bottom left: Image obtained after edge
detection (image modified for better viewing)

m i, j + s i, jis classified as foreground. Considering the inverse
relationship between depth and disparity, regions closer are
classified as foreground, which is physically intuitive. For
regions in the background that lack texture the disparity is
unreliable. An unreliable pixel would have a high standard
deviation since the disparity values in the background images
used for training the model would be highly deviant from the
mean disparity. Thus, all pixels with a standard deviation
s i, j greater than a pre-determined value b are deemed unre-
liable. This is due to many close matches for every pixel in
the corresponding stereo pair. Any pixel labeled unreliable
s i, j > b is considered foreground. The choice of the thresh-
old is important, though not critical (b = 2 in our case). Once
the foreground segmentation is achieved, a binary connected
components algorithm is executed, retaining the biggest blob.
We assume that our region of interest (human) is a continu-
ous blob of pixels. An edge detector is then employed to
obtain the edges of the region of the subject’s body as shown
in figure 1.

3. HEAD TRACKING

The projection of a head on a 2-D plane can be closely mod-
eled by an ellipse. Our tracking algorithm is based on the one
used in [2]. The equation of an ellipse with center (xc,yc) and
minor and major axis lengths a and b, respectively, is given
by equation (3). The ratio of major and minor axis lengths is
called the aspect ratio. The ellipse equation in terms of the
aspect ratio is given in equation (4).

(x− xc)
2

a2 +
(y− yc)

2

b2 = 1 (3)

k2(x− xc)
2 +(y− yc)

2 = b2 where k =
b
a

(4)

It is observed that for a fixed aspect ratio k, the position of
the ellipse (xc,yc) and the scale (major axis length b) describe
the state of the ellipse. Thus for each frame the most likely
position of the ellipse (xc,yc) is determined as one with the

Figure 2: Head size estimation of person moving away from
camera (Side view)

maximum normalized sum about the circumference of the
ellipse. In other words, for a given scale the co-ordinates that
yield the maximum likelihood, as defined in equation (5), is
chosen as the center of the ellipse.

(x∗,y∗) = argmax{|x−xp|≤xr ,|y−yp|≤yr}{
1
N

N

å
k=1

pk} (5)

The new position of the ellipse would be the one with maxi-
mum likelihood over a search range of (xr, yr)1 pixels about
the predicted position (xp,yp). N denotes the number of pix-
els on the ellipse’s circumference. The position in frame n
is then predicted assuming constant velocity of motion of the
subject and is obtained using (6). Though other state track-
ing methods employing complex models exist, they would be
complicating the task as tracking is performed on a sequence
of binary images delineating the subject alone.

(xp
n ,yp

n) = 2∗ (x∗n−1,y
∗
n−1)− (x∗n−2,y

∗
n−2) (6)

A local search about the predicted position over the search
range would yield the most likely position of the ellipse.
For the first two frames, the search space has to span a
greater area, and in our case it was confined to the subject’s
body. A global search would prove computationally expen-
sive, thereby justifying the employment of constant velocity
prediction. As for the scale, the other parameter describing
the state of the ellipse, we use our head size estimation tech-
nique described in Section 3.1.

3.1 Head-size estimation

Here we present a technique to predict the size of the head
using the disparity values already obtained. The motion of
the subject in 3-D space can be considered as one from a
disparity plane to another. This calls for the interpretation
of 3-D space as a set of discrete disparity planes, parallel
to each other and the plane of view. The plane closest to
the camera has the highest disparity and the farthest has zero
disparity. The size of the head is assumed to appear dimin-
ishing when the subject is moving away from the camera and
increasing when moving towards the camera. This is driven

1We used xr = yr = 20 pixels
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Figure 3: Scales corresponding to figures 4,5 and 6

Figure 4: Subject walking away from camera: Selected frames between frames 36-54

Figure 5: Subject walking towards camera: Selected frames between Frames 127-145

Figure 6: Subject walking towards camera: Selected frames between Frames 223-251

by intuition and is particularly useful when the motion of the
subject seems pronounced between frames. From figure (2),
using similar triangles, the predicted scale r p

n for a frame is
given by equation (7). Here dn represents the disparity in the
current frame and r n−1 the scale in the previous frame. This
provides us with a scale that is approximate, since we assume
the vertex of the cone generated to lie on the zero disparity
plane. It is critical to note the irrelevance of the position of
the head in a frame. It is to be noted that the size of the head
is assumed to appear the same when the motion of the subject
is confined to the same disparity plane.

r p
n =

r ∗
n−1 ∗dn

dn−1
(7)

r ∗
z = argmax{|r z−r p

z |≤r r}
{

1
N

N

å
k=1

pk} (8)

This assumption is consistent with equation (7). A local
search about the predicted scale can be conducted to obtain
the closest scale, but was found to be redundant in our case.
As our algorithms were run offline, the scale in the first frame
was used recursively to yield the scales in the subsequent

frames. The approximate scale as in (7) worked remarkably
well, given the simplicity of the expression. Equation (8) can
be used for accurate modeling of the head, for frame z. 2

Here we make the assumption that the subject has a single
disparity. In most cases, due to other factors such as occlu-
sion, the pixels corresponding to the human would have no
unique disparity. In that case, the statistical mode of the cor-
responding disparity values is taken as the required disparity.
Once the position of the head in the image plane is known,
the position in 3-D space can be obtained with knowledge of
the camera parameters.

4. RESULTS AND DISCUSSION

A stereo database, comprising of sequences of rectified im-
ages with considerable motion of the subject is used [8]. The
stereo algorithm used a window 15 pixels in length and a 64
pixel search for correspondence, assuming the epipolar con-
straint [9]. The depth model was developed using 30 images
of the background. For tracking, the head was modeled as an
ellipse with aspect ratio 1.1 and the search space was 20 pix-

2r r = 0 in our case



els (xr = yr = 20). The results obtained are shown in figures
4,5 and 6. Figures 4 and 5 illustrate the performance of the
tracker for a person moving towards and away from the cam-
era, respectively. Figure 6 shows the results for the subject
changing the direction of motion.

To analyze the performance of the tracker, we consider
issues related to the environment and the algorithm. The for-
mer would address distractions from the ambience and issues
concerning the subject’s movement. Algorithm based issues
includes addressing the palpable shortcomings of the stereo,
segmentation and tracking algorithms. The tracker’s perfor-
mance for any orientation of the head, was observed to be
satisfactory as seen in figures 4, 5 and 6 3. The tracker is ex-
pected to handle occlusions fairly well, as long as the occlud-
ing object is not elliptical in shape. Erratic movements of the
subject, especially those involving change in direction of mo-
tion are not expected to be tracked successfully. However, the
tracker performs well when the subject changes direction of
motion as observed figure 6. This is because of the relatively
larger search space employed, and it manifests the effective-
ness of the constant velocity prediction technique used. The
advantages of using stereo is clear in frames where the sub-
ject’s head (hair) color blends with the background and when
the head appears relatively bald. These are instances where
color or intensity-edge based trackers would fail. The tracker
is observed to be resistant to mild tilting of the head, as seen
in figure 6. The effectiveness of the scale prediction tech-
nique used is evident in the results shown. The order of scale
variation between frames 36-51 was as high as 40%, ranging
from 50 in frame 36 to 30 pixels in frame 51, as shown in
figure 3.

We now consider the algorithm related issues. The stereo
algorithm used assumes all pixels in a window to have the
same depth, which results in poor modeling of depth dis-
continuities. This would result in the edges obtained being
offset by at most half the window length. As our window
length is relatively small (15 pixels), this does not affect the
results. The behavior of the tracker was unpredictable when
the subject was along the boundaries. This stems from one
of the major shortcomings of the correlation based stereo al-
gorithm. Although the tracker required manual scale initial-
ization, it was found to be tolerant to a wide range of values.
The same was the case with the threshold (b ) chosen for seg-
mentation. The value was not critical as 3.2% of the total
pixels were deemed unreliable for b = 2, while the unreli-
able pixels’ percentage dropped marginally to 2.7% for b =
3. The segmentation and tracking modules posed no prob-
lems related to the tracker’s performance.

The tracker was thus found to be robust against out-of
plane rotation, background distractions, tilting and consid-
erable motion towards and away from the camera. Further,
the tracker’s performance is relatively unconstrained by the
background except for the highly unlikely case where the
background is completely devoid of texture.

5. CONCLUSION

A stereo based elliptical head tracker is presented in this pa-
per. The approach is based on depth modeling facilitated
by the disparity images obtained from stereo. Tracking is
achieved by modeling the head as an ellipse and incorporat-

3View entire sequence at www.clemson.edu/ ˜ knaraya/stereo.html

ing constant velocity prediction. A simple head size estima-
tion technique is used and its usefulness is demonstrated.

The results illustrate the robustness of the adopted ap-
proach to various factors that affect contemporary head track-
ers. As long as the shape of the head above the shoulders
is discernible, the tracker would work. Employing stereo
would also enable spatial localization of the subject, which
would find use in smart room based applications and Human
computer interfaces. Future work will include integrating the
tracker into a multimodal system with acoustic input realized
by a real-time algorithm, for accurate speaker localization.
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