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ABSTRACT
In this paper we derive a new adaptive filtering algorithm.
Starting from a general square-root formulation [1], we in-
troduce a normalization transform to the updating scheme of
the block-diagonal adaptive algorithm presented in [1]. This
algorithm is efficiently implemented with a low complexity,
the resulting algorithm is similar to the NLMS one. Simu-
lations, in the context of multichannel adaptive filtering with
highly intercorrelated channels, show a fast convergence of
our new algorithm.

1. INTRODUCTION

Adaptive filtering has received a considerable attention dur-
ing last decades because of its application in many fields such
as system identification, echo cancellation and equalization.

One of the best known adaptive filter is perhaps the gradi-
ent type one using the Least Mean Square (LMS) algorithm,
it is extremely robust and simple to implement but it has lim-
ited performance. The Recursive Least Squares (RLS) adap-
tive algorithm is the other well known algorithm, it is more
complex but it can yield a very fast convergence.

The square-root form of recursive least squares is based
on elementary (rotation) transforms, so it has a better nu-
merical robustness than the standard RLS [5]. Recently,
we have generalized this square-root approach (QR-RLS) to
other non least squares algorithms [1]. We have also derived
other square-root type adaptive algorithms with good perfor-
mances (in [2] and [3]), but they remain more complex than
very low complexity algorithms such as LMS and Normal-
ized LMS (NLMS).

These rotations based algorithms are a very interesting
alternative to standard form recursive least squares and the
issued fast versions (e.g. FTF). In fact, they combine an in-
herent numerical stability [5] with the existence of fast ver-
sions of these algorithms [4].

However, due to the high order of the filter encountered
in some applications (e.g. acoustic echo cancellation), it is
important to have low complexity algorithms.

In the following, we will derive a new square-root adap-
tive filtering algorithm with a first fast (efficient) implemen-
tation. Then we will derive another fast algorithm which
looks like the NLMS. This later will be simulated for sys-
tem identification application.

2. DERIVATION OF THE SQUARE-ROOT FORM

We consider the general framework of an adaptive with
the general input vector of size N, which includes both
monochannel and multichannel adaptive filtering.

The input vector,

x(n) = ( x1 (n) x2 (n) · · · xN (n) )T

The output error is given by

e(n) = d (n)−xT (n) .w (n)

where d (n) is the signal reference.
and w (n) = ( w1 (n) w2 (n) · · · wN (n) )T is the

parameter vector.
Our new square-root adaptive algorithm will be formu-

lated by an update scheme similar to the Block-diagonal
QR (BQR) adaptive algorithm which fits within the general
square-root framework [1].

We start from the BQR adaptive algorithm with N
unitary-sized blocks

Its update scheme is given by

Q(n) .
[

xT (n) d (n)
λR′ (n−1) λdw′ (n−1)

]
=
[

0T de (n)
R(n) dw (n)

]
where the diagonal matrix

R′ (n−1) = diag(r1 (n−1) ,r2 (n−1) , . . . ,rN (n−1))

and R(n) is an upper triangular matrix decomposed into:
a diagonal part (R′ (n)) and an off-diagonal part (B(n)).

R(n) =


r1 (n) × ·· · ×

r2 (n)
. . .

...
. . . ×

© rN (n)


= R′ (n)+B(n)

and the vector

dw′ (n−1) = dw (n−1)−B(n−1) .w (n−1)

The parameter vector is obtained by solving

R(n) .w (n) = dw (n)

The orthogonal transform Q(n) is (N +1)× (N +1) . It
can be decomposed into N elementary Givens transform (ro-
tations)

Q(n) = QN (n) .QN−1 (n) . . .Q1 (n)



where

Qk (n) =



ck (n) 0 · · · 0 −sk (n) ©
0 1 0
...

. . .
...

0 1 0
sk (n) 0 · · · 0 ck (n)

. . .

© ... 1


(k +1)th

ck (n) = cosθk (n)
sk (n) = sinθk (n)

Starting from this algorithm, we will propose a new al-
gorithm. It is based on an N steps (k = 0, . . . ,N) update of
R′ (n−1) and dw′ (n−1) using at each step a normalization
transform.

In the rest of this section we will detail the formulation
for this new algorithm.

The decomposition of the BQR update scheme into N
steps,

for k = 1, ..,N

Qk (n) .

[
x′Tk−1 (n) d′k−1 (n)
Rk−1 (n) dw

k−1 (n)

]
=
[

x′Tk (n) d′k (n)
Rk (n) dw

k (n)

]
where Rk (n) is equal to

r1 (n) × ·· · ×
. . .

rk (n) × ·· · ×
λ rk+1 (n−1) ©

. . .
© λ rN (n−1)


with

R0 (n) = λ .R′ (n−1)

dw
0 (n) = λ .dw′ (n−1)

RN (n) = R(n)
dw

N (n) = dw (n)

and

x′k (n) =
(

0 · · · 0 x′k,k (n) · · · x′N,k (n)
)T

with

x′0 (n) = x(n)

d′0 (n) = d (n)

x′N (n) = 0

d′N (n) = de (n)

Every elementary transform Qk (n) annihilate one com-
ponent of the first line-vector x′Tk−1 (n).

It can be easily showed that

x′k (n) = γk (n) .xk+1,N (n)

where the N-vector,

xk+1,N (n) = ( 0 · · · 0 xk+1 (n) · · · xN (n) )T

and

γk (n) = γk−1 (n) .ck (n) , γ0 (n) = 1

It follows that Qk (n) (or θk (n)) depends on Qk−1 (n) (or
θk−1 (n)).

In order to decouple these matrix, we introduce the nor-
malization transform for x′Tk−1 (n).

Thus, the resulting new algorithm is updated by
for k = 1, ..,N

Qk (n) .

[
xT

k,N (n)
d′k−1(n)
ck−1(n)

Rk−1 (n) dw
k−1 (n)

]
=
[

x′Tk (n) d′k (n)
Rk (n) dw

k (n)

]
(1)

with d′0 (n) = d (n) and c0 (n) = 1.
Similarly to [4][3], we expect that our algorithm can be

efficiently implemented with a low complexity. However,
due to the normalization transform, we reach a more impor-
tant reduction in complexity than in the other fast QR based
adaptive algorithms.

3. EFFICIENT IMPLEMENTATION

In the case of the Fast QR algorithm [4], and since we do not
need to explicitly compute the parameter vector, the output
error can be efficiently computed with an O(N) complexity.

Similarly, we will derive a new effecient implementation
of our previous algorithm (see equation 1)

First, let’s define an (N +1) pinning vector

p = ( 1 0 · · · 0 )T

Then

Qk (n) .p = ( ck (n) 0 · · · 0 sk (n) 0 · · · 0 )T

(2)
If we multiply (1) by the vector

( −wT (n) 1
)T

Qk (n) .

(
d′k−1(n)
ck−1(n) −xT

k,N (n) .w (n)
dw

k−1 (n)−Rk−1 (n) .w (n)

)

=
(

d′k (n)−x′Tk (n) .w (n)
dw

k (n)−Rk (n) .w (n)

)
(3)

The scalar product of (2) by (3) gives

d′k−1 (n)
ck−1 (n)

−xT
k,N (n)w (n) = ck (n)

(
d′k (n)−x′Tk (n)w (n)

)
(4)

since the kth component of the vector dw
k (n)−Rk (n)w (n)

is equal to zero.
From (3), we verify that x′k (n) = ck (n) .xk+1,N (n)
And, by induction, we show that

d′k (n)
ck (n)

= d (n)−
k

∑
i=1

xi (n) .wi (n−1) (5)



Replacing (5) in (4) leads to

ek−1 (n) = c2
k (n) .ek (n) (6)

where ek (n) is the output error computed using the pa-
rameter vector wk (n),

wk (n) =



w1 (n−1)
...

wk (n−1)
wk+1 (n)

...
wN (n)


Then ek (n) = d (n)−xT (n)wk (n)
Which can be formulated recursively by

ek (n) = ek−1 (n)+(wk (n)−wk (n−1))xk (n) (7)

where
eN (n) denotes the prior output error eprior (n)
e0 (n) denotes the posterior output error e(n)
Combining (6) and (7),

wk (n) = wk (n−1)+
s2

k (n)
xk (n)

ek (n)

the value of sk (n) is then replaced,

wk (n) = wk (n−1)+
xk (n)
r2

k (n)
ek (n)

where r2
k (n) = x2

k (n)+λ 2.r2
k (n−1)

This relation is used as an update equation when k varies
from N downto 1.

The resulting new efficient algorithm: ALGO 1,

for k = 1, ..,N
σk (−1) = 0

end k

for n = 0, ..,L
eN (n) = d (n)−∑N

i=1 xi (n) .wi (n−1)
for k = N, ..,1

σk (n) = x2
k (n)+λ 2.σk (n−1)

wk (n) = wk (n−1)+ xk(n)
σk(n)ek (n)

ek−1 (n) = ek (n)− (wk (n)−wk (n−1))xk (n)
end k
e(n) = e0 (n)

end n

This algorithm has already a low complexity. However,
in the case of monochannel adaptive filtering, we will further
reduce the complexity by exploiting the shift structure of the
input vector.

4. THE NOVEL NLMS-LIKE ADAPTIVE FILTER

Now, we consider the case of monochannel adaptive filter.
The result is a simple algorithm. The generalization to mul-
tichannel case is quite direct.

In order to get a simple set of update equations, we use
the following new definitions for the vectors x(n) and w (n)

x(n) = ( x(n−N +1) x(n−N +2) · · · x(n) )T

w (n) = ( wN (n) wN−1 (n) · · · w1 (n) )T

This means that ALGO 1 must be reformulated :
- wk (n) is replaced by wN+1−k (n)
- ek (n) is replaced by eN+1−k (n)

Then we approximate σk (n) by σ (n+ k−N) where
σ (n) = x2 (n)+λ 2.σ (n−1).

Finally, we obtain our novel NLMS-like adaptive filtering
algorithm: ALGO 2,

σ (−1) = 0

for n = 0, ..,L
e1 (n) = d (n)−∑N

i=1 x(n+1− i) .wi (n−1)
σ (n) = x2 (n)+λ 2.σ (n−1)
α (n) = x(n)

σ(n)
for k = 1, ..,N

δk (n) = α (n+1− k) .ek (n)
wk (n) = wk (n−1)+δk (n)
ek+1 (n) = ek (n)−δk (n) .x(n+1− k)

end k
e(n) = eN+1 (n)

end n

The complexity of ALGO 2 is equal to 3N +1 additions,
3N+2 multiplications and 1 division. It is close to the NLMS
complexity.

5. SIMULATIONS

Montecarlo simulations are done over 100 trials.
In next figure, we consider a noisy identification scheme

in the case of multichannel adaptive filter with a forgetting
factor λ = 0.99, an SNR = 20dB, and two channels with
highly intercorrelated speech input signals.

Such scheme is encountered in stereophonic acoustic
echo cancellation.

The filter size used here is N = 32.

6. CONCLUSION

The generalized square-root approach of adaptive filtering
[1] have permitted to us the derivation of new adaptive al-
gorithms computationally efficient.

The last derived one (ALGO 2) has a very low complex-
ity like the NLMS. It has also showed good performances in
the case of stéréophonic acoustic echo cancellation.
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Figure 1: MSE vs. time for ALGO 2, QR-RLS and NLMS
(with speech input signal)


	Index
	EUSIPCO 2005

	Conference Info
	Welcome Messages
	Sponsors
	Committees
	Venue Information
	Special Info

	Sessions
	Sunday 4, September 2005
	SunPmPO1-SIMILAR Interfaces for Handicapped

	Monday 5, September 2005
	MonAmOR1-Adaptive Filters (Oral I)
	MonAmOR2-Brain Computer Interface
	MonAmOR3-Speech Analysis, Production and Perception
	MonAmOR4-Hardware Implementations of DSP Algorithms
	MonAmOR5-Independent Component Analysis and Source Sepe ...
	MonAmOR6-MIMO Propagation and Channel Modeling (SPECIAL ...
	MonAmOR7-Adaptive Filters (Oral II)
	MonAmOR8-Speech Synthesis
	MonAmOR9-Signal and System Modeling and System Identifi ...
	MonAmOR10-Multiview Image Processing
	MonAmOR11-Cardiovascular System Analysis
	MonAmOR12-Channel Modeling, Estimation and Equalization
	MonPmPS1-PLENARY LECTURE (I)
	MonPmOR1-Signal Reconstruction
	MonPmOR2-Image Segmentation and Performance Evaluation
	MonPmOR3-Model-Based Sound Synthesis ( I ) (SPECIAL SES ...
	MonPmOR4-Security of Data Hiding and Watermarking ( I ) ...
	MonPmOR5-Geophysical Signal Processing ( I ) (SPECIAL S ...
	MonPmOR6-Speech Recognition
	MonPmPO1-Channel Modeling, Estimation and Equalization
	MonPmPO2-Nonlinear Methods in Signal Processing
	MonPmOR7-Sampling, Interpolation and Extrapolation
	MonPmOR8-Modulation, Encoding and Multiplexing
	MonPmOR9-Multichannel Signal Processing
	MonPmOR10-Ultrasound, Radar and Sonar
	MonPmOR11-Model-Based Sound Synthesis ( II ) (SPECIAL S ...
	MonPmOR12-Geophysical Signal Processing ( II ) (SPECIAL ...
	MonPmPO3-Image Segmentation and Performance Evaluation
	MonPmPO4-DSP Implementation

	Tuesday 6, September 2005
	TueAmOR1-Segmentation and Object Tracking
	TueAmOR2-Image Filtering
	TueAmOR3-OFDM and MC-CDMA Systems (SPECIAL SESSION)
	TueAmOR4-NEWCOM Session on the Advanced Signal Processi ...
	TueAmOR5-Bayesian Source Separation (SPECIAL SESSION)
	TueAmOR6-SIMILAR Session on Multimodal Signal Processin ...
	TueAmPO1-Image Watermarking
	TueAmPO2-Statistical Signal Processing (Poster I)
	TueAmOR7-Multicarrier Systems and OFDM
	TueAmOR8-Image Registration and Motion Estimation
	TueAmOR9-Image and Video Filtering
	TueAmOR10-NEWCOM Session on the Advanced Signal Process ...
	TueAmOR11-Novel Directions in Information Theoretic App ...
	TueAmOR12-Partial Update Adaptive Filters and Sparse Sy ...
	TueAmPO3-Biomedical Signal Processing
	TueAmPO4-Statistical Signal Processing (Poster II)
	TuePmPS1-PLENARY LECTURE (II)

	Wednesday 7, September 2005
	WedAmOR1-Nonstationary Signal Processing
	WedAmOR2-MIMO and Space-Time Processing
	WedAmOR3-Image Coding
	WedAmOR4-Detection and Estimation
	WedAmOR5-Methods to Improve and Measures to Assess Visu ...
	WedAmOR6-Recent Advances in Restoration of Audio (SPECI ...
	WedAmPO1-Adaptive Filters
	WedAmPO2-Multirate filtering and filter banks
	WedAmOR7-Filter Design and Structures
	WedAmOR8-Space-Time Coding, MIMO Systems and Beamformin ...
	WedAmOR9-Security of Data Hiding and Watermarking ( II  ...
	WedAmOR10-Recent Applications in Time-Frequency Analysi ...
	WedAmOR11-Novel Representations of Visual Information f ...
	WedAmPO3-Image Coding
	WedAmPO4-Video Coding
	WedPmPS1-PLENARY LECTURE (III)
	WedPmOR1-Speech Coding
	WedPmOR2-Bioinformatics
	WedPmOR3-Array Signal Processing
	WedPmOR4-Sensor Signal Processing
	WedPmOR5-VESTEL Session on Video Coding (Oral I)
	WedPmOR6-Multimedia Communications and Networking
	WedPmPO1-Signal Processing for Communications
	WedPmPO2-Image Analysis, Classification and Pattern Rec ...
	WedPmOR7-Beamforming
	WedPmOR8-Synchronization
	WedPmOR9-Radar
	WedPmOR10-VESTEL Session on Video Coding (Oral II)
	WedPmOR11-Machine Learning
	WedPmPO3-Multiresolution and Time-Frequency Processing
	WedPmPO4-I) Machine Vision, II) Facial Feature Analysis

	Thursday 8, September 2005
	ThuAmOR1-3DTV ( I ) (SPECIAL SESSION)
	ThuAmOR2-Performance Analysis, Optimization and Limits  ...
	ThuAmOR3-Face and Head Recognition
	ThuAmOR4-MIMO Receivers (SPECIAL SESSION)
	ThuAmOR5-Particle Filtering (SPECIAL SESSION)
	ThuAmOR6-Geometric Compression (SPECIAL SESSION)
	ThuAmPO1-Speech, speaker and language recognition
	ThuAmPO2-Topics in Audio Processing
	ThuAmOR7-Statistical Signal Analysis
	ThuAmOR8-Image Watermarking
	ThuAmOR9-Source Localization
	ThuAmOR10-MIMO Hardware and Rapid Prototyping (SPECIAL  ...
	ThuAmOR11-BIOSECURE Session on Multimodal Biometrics (  ...
	ThuAmOR12-3DTV ( II ) (SPECIAL SESSION)
	ThuAmPO3-Biomedical Signal Processing (Human Neural Sys ...
	ThuAmPO4-Speech Enhancement and Noise Reduction
	ThuPmPS1-PLENARY LECTURE (IV)
	ThuPmOR1-Isolated Word Recognition
	ThuPmOR2-Biomedical Signal Analysis
	ThuPmOR3-Multiuser Communications ( I )
	ThuPmOR4-Architecture and VLSI Hardware ( I )
	ThuPmOR5-Signal Processing for Music
	ThuPmOR6-BIOSECURE Session on Multimodal Biometrics ( I ...
	ThuPmPO1-Multimedia Indexing and Retrieval
	ThuPmOR7-Architecture and VLSI Hardware ( II )
	ThuPmOR8-Multiuser Communications (II)
	ThuPmOR9-Communication Applications
	ThuPmOR10-Astronomy
	ThuPmOR11-Face and Head Motion and Models
	ThuPmOR12-Ultra wideband (SPECIAL SESSION)


	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Ö
	Ø

	Papers
	Papers by Session
	All papers

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	Copyright
	About
	Current paper
	Presentation session
	Abstract
	Authors
	Mounir Bhouri



