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ABSTRACT
Conventional statistical language models such as N-grams
are inadequate to model long distance dependencies in nat-
ural language. In this paper we propose a novel statistical
language model to capture topic related long range depen-
dencies. Humans have the inherent ability to identify long
range dependencies in natural language. Given a set of re-
lated words humans can easily identify the context in which
the set of words is occurring. It has been shown by many re-
searchers that Independent Component Analysis (ICA) cap-
tures these kind of dependencies better than any other for-
mulation. Furthermore, ICA provides a topic decomposition
that can be easily interpreted by humans compared to other
models. This paper describes the development of a language
model using ICA. The topic model is combined with a stan-
dard N-gram to produce the language model. The perplexity
results obtained show that this language model is a viable
language model for speech recognition purposes.

1. INTRODUCTION

The goal of statistical language modeling is to assign
probabilities to a sequence of words. The most prominent
use of language models is in Automatic Speech Recog-
nition (ASR), where the language model assigns a priori
probability to help differentiate words that have similar
acoustical properties. The most popular language models
in use are the N-grams. Although they are effective for
some applications, their predictive power is limited. Usually
N is of the order of 2 or 3, which greatly restricts the
predictive power of the N-grams. Higher order N-grams (
of the order of N = 6,7,...) have been tried, but they have
been found to be unreliable, the main reason for this being
data sparseness. Even higher order N-grams cannot capture
the long range dependencies of natural language, which
humans can easily identify. Several attempts have been
made to overcome this limitation. The earliest attempts
in this regard were made in the form of variable length
word-category based N-grams [1]. In this method an attempt
was made to classify words into categories and then use
these for language modeling. Cache models [2, 3, 4] try
to increase the probability of the words in the history by
allowing the probability to decay exponentially according
to the distance. Trigger-based models [5, 6] work on the
principle of word trigger pairs in which the probability of a
particular word increases if its trigger pair is in the history.
A more recent approach is the Latent Semantic Analysis
(LSA) language model [7] which uses semantic relationships
to model the language. Grammar based techniques have
also been attempted. These try to exploit syntactical regu-
larities to model the long range dependencies. Prominent

approaches of this kind are described in [8, 9]. A more
recent approach [10] tries to use syntactic information in the
LSA type formulation to model the long range dependencies.

Our approach here is more closely related to the LSA
formulation [7] in that we try to use a semantic relationship
between words and documents. Mathematically the relation-
ship can be written as

P(w|h) = ∑
t

P(w|t)P(t|h) (1)

where P(w|t) is the topic specific word probability and
P(t|h) is the mixing factor that depends on the history h, and
t is the variable that refers to different topics. This latent
variable t is produced by ICA.

ICA is a method of representing a set of multivariate ob-
servations as a linear combination of unknown latent vari-
ables that are statistically independent. ICA was originally
developed in the context of Blind Source Separation (BSS)
but has lately been found useful in text document analysis.
The first attempts at using ICA for text document analysis
were performed by [11, 12] in the context of information re-
trieval where it was very successful. The latent variables in
the case of ICA are the topics and these can be regarded as
probability distributions on the universe of terms. The re-
sulting model ignores the syntactic information and also the
word order as do similar models [13, 7]. This kind of mod-
eling implies a single word-topic relation. The local word
distributions are handled at a different stage when the ICA
model is combined with N-grams.

2. INDEPENDENT COMPONENT ANALYSIS

In this section we give a brief outline of Independent Com-
ponent Analysis. The classic ICA model can be expressed
as

x = As (2)

where x = {x1,x2,x3, ..,xn}
T is the vector of observed ran-

dom variables. The vector of the independent latent variables
is denoted by s = {s1,s2,s3, ..,sn}

T and A is an unknown
constant matrix called the mixing matrix. If we denote the
columns of matrix A by ai the model can be written as

x =
n

∑
i=1

aisi. (3)

The goal in ICA is to learn the decomposition in Eq. 2, i.e.,
A and s, in an unsupervised manner. That is we only observe



x and want to estimate both A and s. The basic assumption
in ICA is that the latent variables si are statistically indepen-
dent. Also, there are three properties of ICA that must be
taken into account when considering the results. First, one
cannot determine the variances of the independent compo-
nents. Second, one cannot determine the order of the compo-
nents, and third, the independent components must be non-
gaussian. At most, one the independent components can be
gaussian. Once the mixing matrix is estimated, the indepen-
dent components can be obtained by

s = Wx. (4)

where W = A−1, is called the scattering matrix. The prin-
ciple of ICA is ‘non-gaussian is independent’. The Cen-
tral Limit Theorem of probability theory states that a linear
combination of independent random variables tends toward
a gaussian distribution under certain conditions. Hence, the
sum of many random variables will be least gaussian if only
one of the random variables contributes significantly towards
the sum. Using this approach we can estimate each one of the
independent components. By estimating the non-gaussanity
in all the n-dimensions, we can estimate all the n independent
components.

3. STATISTICAL LANGUAGE MODELING USING
ICA

In this section we show how we can utilize the ICA frame-
work in language modeling using the concept of ICA ex-
plained above.

3.1 ICA Framework
The ICA framework is applied to raw text consisting of M
documents and spanning a vocabulary V of N words. In our
case N = 10,000 and M = 9,371. The documents consists of
a few short paragraphs each containing typically less than
10 sentences. The important point here is that all the text in
a document relates to the same subject and hence is suitable
for a ’semantic analysis’ [7] kind of test to learn the semantic
relationships between the words and documents.

First, we need to pre-process the term document matrix
to produce a feature matrix W that can emphasize the im-
portance of the words in a document. For this purpose we
follow the same feature matrix representation as in [7]. The
cell entries of W are obtained as follows ,

wi,k = (1− εi)
ci,k

nk
(5)

and

εi =−
1

logK

K

∑
k=1

ci,k

ti
log

ci,k

ti
(6)

where ci,k is the number of times words wi occurs in
document dk, nk is the total number of words present in
document dk, ti = ∑k ci,k and εi is the normalized entropy of
wiin the corpus.

The next step in the process is to apply ICA to this word
document matrix. The ICA model that we are adopting here
is a combination of ICA and SVD decompositions giving

Wtxd = TtxkAkxkSkxd (7)

where the matrix T holds the term eigenvectors, A is the ICA
mixing matrix and S holds the separated documents or the
’topics’. SVD decomposition is given by

W = T LDT (8)

where matrix L contains the singular values. Using Eq. 8 and
by matrix inversion of A, the independent component matrix
S is found by, S = A−1LDT This method is similar to [12].
The value chosen for k should reflect the number of differ-
ent topics that are present in the corpus. Any new document
can be projected onto this space to determine which topic
it belongs to. Consider a new document containing words
wi1 ,wi2 , ....,win . The preprocessing, as described previously,
is performed to obtain the weighted document vector d. Pro-
jecting this document vector onto the space, we obtain v as

v = A−1T T d. (9)

The elements of vector v gives us a weighted estimate of how
many topics this document belongs to. If vi is the largest
component of vector v, we can conclude that this document
belongs to the topic si ( ith independent component). Now
if we are given 2 documents, then they can be compared for
semantic similarity by calculating the cosine between their
projections.

3.2 Language modeling using ICA
We have seen in the previous section how we can obtain
semantic relationships between documents using ICA. Now
we will see how this ability of ICA can be used to develop
a language model which assigns higher probability to the
words that are semantically close to the current history and
lower probabilities to other words. As discussed in the previ-
ous section, any document vector can be projected onto the
ICA space. Therefore, consider the current history of words
wq−1,wq−2, ...,w1 as a ’pseudo document’ and project this
pseudo document onto the ICA space. This projection will
give us the current topic. Next we need to determine how
close the current word wq is to this topic. If the word is very
close to the current topic, then we assign it a high probability
and if it is not close, then assign it a low probability. For this
purpose we need to define a metric that can determine this
semantic closeness. We can use a similar metric as used in
[7]. From Eq. 7, T contains the term vectors. We need to
determine how close the term vector corresponding to the
given word is to the topic. That is, we need to find out how
close the vector tiA, corresponding to word wi, is to As̃ j.
A simple distance measure available is the dot product. Thus,

D(wq,H1,q−1) = (tqA).(As̃q−1) (10)

where H1,q−1 is the history, s̃q−1 is the projection of the
history on to the ICA space and tq is the term vector
corresponding to word wq.

The normalized version of Eq.10 is

D(wq,H1,q−1) =

[

tqA
‖tqA‖

][

As̃q−1

‖As̃q−1‖

]T

(11)

This distance metric can be used to generate a probability



value by converting it to a probability mass function. This
is done by making the total probability over all the words to
be equal to 1, such that the farther away a word is from the
current topic of the history, the lower its probability will be.
Therefore, the ICA probability can be obtained by

Pica(wq|H1,q−1) =
D(wq,H1,q−1)

∑wi∈V D(wi,H1,q−1)
. (12)

This ICA probability measure can capture the long dis-
tance relationships of the words, but cannot model the local
word distributions. N-grams do the exact opposite. They can
capture the local word distributions well because of maxi-
mum likelihood estimation from the training corpus and var-
ious smoothing techniques, but not the long distance relation-
ships. Logic suggests combining the two to obtain the best
performance. To combine the two models we have used an
approach similar to the one in [7]. We use

P(wq|Hq−1) =
P(wq,H

(l)
1,q−1|H

(n)
q−n+1,q−1)

∑wi∈V P(wi,H
(l)
1,q−1|H

(n)
q−n+1,q−1)

(13)

where H(l)
1,q−1 is due to the history of ICA model and

H(n)
q−n+1,q−1 is the history of the N-gram. The final model is

given by

P(wq|Hq−1) =
P(ica)(wq,H1,q−1)P(wq|wq−1,...,q−n+1)

∑wi∈V P(ica)(wi,H1,q−1)P(wi|wq−1,...,q−n+1)
(14)

4. EXPERIMENTS AND RESULTS

In this section we describe our experimental setup and
the results that were obtained. An analysis of the results
obtained is also presented in this section.

The performance of any language model is measured in
terms of perplexity, which is a measure of how well the
model predicts the occurrence of words in a given (unseen)
text. The assumption is that the test text is from the same
domain as the training data. The perplexity of a language
model X is given by

PP(X) =−
1
N

N

∑
i=1

logP(wi|Hq−1) (15)

where N is the total number of words in the test set. Per-
plexity also indicates the average branching produced by the
language model X. Thus, perplexity indicates how well the
model performs for a speech recognition task. Generally,
the relation between word error rate of a speech recognizer
and the perplexity is linear, that is, lower perplexity usually
translates to lower word error rates. We have implemented
our model on the Wall Street Journal database from the
BLLIP corpus, which is a collection of news stories from the
Wall Street Journal for the years 1987, 1988 and 1989.

The WSJ corpus consists of about 94,000 documents and
43 million words. For this experiment we used the data from
year 1987. This data consists of about 41,275 documents
and about 20 million words. We have used the 9,371
largest documents among these as a trade-off between data
sparseness and computational complexity. The vocabulary
consists of 10,000 most frequently occurring words in the
dataset. Note that in contrast to others [10], we made no
attempt to remove function words such as ’the’, ’and’, ’to’,
as in [7]. This was done keeping in mind that removing the
function words may affect the language model, even though
these kind of words do not carry any semantic information.
The dataset was split into a training set of about 4.7 million
words and a test set of about 250,000 words. All numerical
strings were mapped to the same number ’9’ as in [10].

Our word-document matrix is of size 10,000 x 9,371.
ICA was implemented on Matlab using the FastICA toolkit
[14]. The word-document matrix has about 99% sparse-
ness. Hence, the word-document matrix was stored in sparse
matrix format in Matlab resulting in a significant saving of
memory. The SVD decomposition of Eq. [8] was imple-
mented using the sparse matrix toolbox of Matlab. We have
used both Bi-gram and Tri-gram as the N-gram in our model.
These were implemented using the CMU-Cambridge toolkit
[15]. The perplexity was obtained for k = 50, 100 and 200
for each case, i.e. ICA + Bi-gram and ICA + Tri-gram.

Baseline Bi-gram 246.3

No of Topics Perplexity % reduction from Bi-gram
50 152.3 38.1%
100 143.8 41.54%
200 134.2 45.45%

Figure 1: Perplexity results for ICA + Bi-gram

The results of combining the ICA model with a Bi-gram
is given in Figure. 1. From the results we can see that ICA
model has been able to reduce the perplexity from the Bi-
gram value. The maximum reduction in perplexity achieved
was 45.45%. Also as the number of topics increased, the
perplexity reduces. This means that we are yet to reach the
actual number of topics that are in the training set. Ideally, k
should be equal to the actual number of topics that are in the
data set.

Baseline Tri-gram 166.1

No. of Topics Perplexity % reduction from Tri-gram
50 115.73 30.28%
100 106.9 35.6%
200 102.78 38.08%

Figure 2: Perplexity results for ICA + Tri-gram

The results of combining the ICA model with a Tri-gram
are given in Figure. 2. From the results we can see that ICA
model has been able to reduce the perplexity from the Tri-
gram value. The maximum reduction in perplexity achieved
was 38.08%. Also, the perplexity is less than the case of ICA



+ Bi-gram. This is expected as the baseline perplexity of a
Tri-gram is far less than that of Bi-gram. But the reduction
in perplexity from the baseline is not as much as in the Bi-
gram case. As in the Bi-gram case, the perplexity reduces as
the number of topics increases. Comparing the results with
that of the Bi-gram case, we can say that ICA + Tri-gram is
a better model. Also, implementing a Tri-gram is not signif-
icantly more difficult than a Bi-gram. Thus ICA + Tri-gram
is the better model among the two.

5. ANALYSIS OF RESULTS

The results in the previous section show that the ICA based
model is a viable model for language modeling. The ICA
+ Trigram model has performed better than the ICA + Bi-
gram model. This is expected, since this model is similar to
LSA model [7] where similar results have been presented.
A true comparison of the two models, however cannot be
made since the results in [7] have been obtained on a dif-
ferent test and training set. However based on the results
reported in [11], where a comparison between LSA and ICA
based models was done for Information Retrieval purposes,
we can say that ICA based model will definitely preform bet-
ter than the LSA model for language modeling. However at
this point in time we do not have any experimental evidence
to confirm this. [7] has been able to improve upon the base-
line perplexities by applying different smoothing techniques.
This suggests that the same could be done here to improve
the perplexity of the ICA based language model. Also im-
plementing the ICA based is very when compared to some-
thing like EM based model where the EM algorithm has to be
implemented. In this sense the ICA model is advantageous
when compared to the EM based model of [13].

6. CONCLUSION AND FUTURE WORK

We have successfully demonstrated a method of applying In-
dependent Component Analysis for statistical language mod-
eling. A topic model was developed using ICA. The topic
model was then combined with a standard N-gram to obtain
the language model. The perplexity results obtained compare
favorably with other other models such as the LSA model [7]
and EM based model [13] and is very encouraging. Our im-
mediate plan for the future includes applying better smooth-
ing techniques for the language model. Word clustering tech-
niques could also be applied to further improve the perplexity
of the model. Techniques to incorporate syntactic informa-
tion will also be investigated in the future as well as testing
this model on a real time speech recognition task.
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