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ABSTRACT

Traditional data transmission over an insecure noiseless
channel consists of first compressing data for efficiency and
then encrypting it for security. Reversing the order of these
operations is considered in Johnson et al. [6]. The central
realization is that while the raw and encrypted data are sta-
tistically independent, the encrypted data and key sequence
are not. If distributed source coding techniques are used to
compress and to jointly decode and decrypt the data, re-
versing the order need not lead to performance reductions
in either communication efficiency or security. In this pa-
per, we build on this work by considering systems that must
operate without knowledge of the underlying source statis-
tics. We present and analyze an incremental scheme based
on exponentially increasing block lengths that is designed to
balance the resolution rate of parameter estimation with the
redundancy rate of communication. We show that the re-
dundancy at best declines proportional to the inverse of the
square root of the block length. We implement these ideas
using low-density parity check (LDPC) codes. In practical
tests to transmit a binary source of 100, 000 bits, ideally com-
pressible to 17, 912 bits with perfect knowledge and an ideal
code, required only 26, 787 bits. In comparison, to trans-
mit this source with full knowledge of the source statistics
required 21, 704 bits.

1. INTRODUCTION

Existing systems offering efficient and secure communication
over an insecure channel first compress the raw data, and
then encrypt the compressed source. Security is obtained,
e.g., by using a one-time pad, resulting in an encrypted
source (cypher-text) that is statistically independent of the
raw source. If, however, the source is not compressed before
encryption, then the independence of the source and cypher-
text might make it seem that data compression is impossible.

However, in [6] it is shown that by making use of dis-
tributed source coding techniques, the dependence between
the cypher-text and key can be exploited to make lossless
compression of the cypher-text possible. Indeed, based on
ideas of distributed source coding pioneered by Slepian and
Wolf [2] it is demonstrated in [6] that when decoding and
decryption are performed jointly, and conditionally on the
key sequence, then the cypher-text is as compressible as the
original source.

A complication arises because encryption and compres-
sion are not performed by the same agent, and therefore the
compression system may not know the statistics of the un-
derlying source. Further, since the cypher-text is statistically
independent of the source, these statistics cannot be learned
on-line by the encoder through observation of the cypher-
text. For these reasons, techniques of universal Slepian-
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Figure 1: The source is first encrypted and then compressed.
The compressor does not have access to the key used in the
encryption step. At the decoder, decompression and decryp-
tion are performed jointly.

Wolf coding that do not require knowledge of the underlying
source statistics are particularly relevant. The schemes de-
veloped in [6], however, require that the compressor know
the entropy rate of the source.

In this work we propose an incremental transmission
scheme that uses feedback to adapt the Slepian-Wolf rate
to the underlying entropy rate. Incremental and universal
Slepian-Wolf schemes are not new. Indeed, as is described,
e.g., in [8, 3], universal variable-rate Slepian-Wolf techniques
exist that can achieve compression to a rate H(y |k) for ar-
bitrary joint source and side information statistics (not just
Bernoulli as we focus on here). However, in those papers
impractical very-high complexity decoders are used. In this
paper we develop a strategy that can be paired with low-
complexity graph-based Slepian-Wolf codes.

The feedback required by our approach is minimal, con-
sisting of acknowledgments and summary statistics. We an-
alyze the scheme and show that it achieves a redundancy
proportional to the inverse of the square root of the block
length. We then describe the results of an implementation
of these ideas using low density parity check (LDPC) codes,
and give simulation results. A block diagram of this system
is give in Figure 1.

This paper is organized as follows. The system model
and proposed protocol are described in Section 2. Its per-
formance is analyzed in Section 3. A practical construction
using LDPC codes is then described in Section 4 along with
simulation results. We conclude the paper in Section 5 with
a discussion of future work.

2. SYSTEM MODEL AND PROTOCOL

The source and encryption model are as follows. The source
xi is a sequence of independent identically distributed (i.i.d.)
Bernoulli-Q binary random variables. The source is en-
crypted by adding it to a one-time pad, a binary key se-
quence ki that is i.i.d. Bernoulli-0.5. The resulting sequence
yi = xi ⊕ ki is fed to the encoder, while the key sequence ki



is made available to the decoder.
As described in [6], by using Slepian-Wolf codes, one need

only transmit at a rate equal to H(y |k) = H(x ⊕ k|k) =
H(x) = H(Q), where H(Q) is the entropy of a Bernoulli-Q
source. Thus, even though the encoder observes a perfectly
protected source (since k is a one-time pad), if Q is known
it can compress the source as much as if it had observed the
source unencrypted.

In the current setting we allow the compression system
a reverse channel through which estimates of Q can be fed
back to the encoder. At time k the encoder maintains a
state variable Q̂k, corresponding to its current estimate of
the statistics of xi, and a rate-margin design parameter εk >

0. We set Q̂0 = 0.5. The system works as follows:

1. The encoder divides the encrypted sequence into block of
length lk, indexed by k = 1, 2, . . . . We use nk =

Pk

j=1
lj

to denote the cumulative block-length. The k-th block
corresponds to symbols y

nk
nk−1+1. By choosing the cu-

mulative block-length to double every transmission, i.e.,
nk = 2nk−1, the error analysis simplifies somewhat. We
assume this choice for the duration of the paper.

2. At step k, the encoder encodes y
nk
nk−1+1 using a rate-Rk

Slepian-Wolf code, where Rk depends on the estimate Q̂k

and margin εk as Rk(Q̂k−1, εk) =

8

<

:

max[H(Q̂k−1 + εk), H(Q̂k−1 − εk)],

if εk < |Q̂k−1 − 0.5|,
1, else,

(1)

i.e., the rate used is H(Q̂k−1) plus a margin. The various

cases in (1) come into play depending on whether Q̂k−1

is greater than or less than one-half, or within the margin
εk of one-half.1

3. The decoder attempts to decode. If it can, it sends an
acknowledgment to the transmitter, along with the up-
dated estimate Q̂k. The estimate Q̂k is simply the pro-
portion of 1s (or 0s) observed thus far. The feedback
following the kth block can therefore be accomplished
with 1 + log2 lk bits. If the decoder cannot decode reli-
ably, it sends a “NAK”, i.e., a request for retransmission.
It holds off sending the updated estimate until it receives
the retransmission.2

4. If the encoder receives an acknowledgment, it moves onto
the next block, using the updated estimate of Q. If the
encoder receives a request for retransmission, it sends the
sequence y

nk
nk−1+1 uncompressed.3

To help cement the protocol, we provide pseudo-code,

• INITIALIZATION

– Set Q̂o = 0.5. Transmit block 1 of l1 symbols.

– Receiver feeds back ACK and estimate Q̂1.

• WHILE (Bits available to send)

– Transmit next lk symbols at rate Rk(Q̂k−1, εk).
– IF receiver fails to decode

∗ Receive sends back NAK
∗ Transmitter resends data block uncompressed

1If we used the more standard choice, i.e., H(Q̂k−1) + εk, we
could avoid the multiplicity of cases of (1). However, by expressing
the margin in the current manner, our analysis simplifies, resulting
in some nice close-form error expressions. Note that we can choose
to add the margin directly to Q̂ only because we focus on binary
sources.

2We assume the code has perfect error-detection capabilities.
3More efficient hybrid-ARQ-type retransmission strategies can

be used. But, this strategy simplifies the error analysis, and only
leads to a marginal loss in efficiency.

– Receiver ACKs and sends back Q̂k.

If ck is the transmission rate of block k, we want to min-
imize the expected transmission rate E [ck] of the scheme.
E [ck] equals the expected rate E [Rk] of the Slepian-Wolf
code plus the probability of a decoding error times ln 2 (1
bit/symbol or ln 2 nats/symbol to account for its uncom-
pressed retransmission). We use ek to denote the event of a
decoding error on block k. Ideally, we minimize the following
cost,

E [ck] = Pr[ek] ln 2 + E [Rk] . (2)

We choose to express the rate in nats to simplify subsequent
notation.

3. ANALYSIS

In this section we show that choosing εk = K(Q)/
√

lk (for a
function K(·)) minimizes the cost (2). As one would expect,
the form of εk should be chosen dependent on Q. However,
Q is unknown, so in practice we would pick the constant

as K(Q̂k−1). The dependence on
√

lk is also somewhat in-
tuitive. The standard deviation in the best estimate of Q
drops as 1/

√
nk−1 = 1/

√
lk.

Without loss of generality, in this analysis we assume
that Q+εk < 0.5. In Section 3.1 we first bound the first term
of (2), the probability of a decoding error. In Section 3.2 we
bound the second term, the expected rate used during the
Slepian-Wolf transmission. In Section 3.3 we put the results
together to choose εk.

3.1 Probability of Decoding Error

We assume that the scheme uses Slepian-Wolf codes that
succeed as long as the entropy rate of the kth block is below
the transmission rate, i.e., H(xnk

nk−1+1) < Rk. We use stan-

dard large deviation techniques following the results of [2] to
bound the probability of decoding error on the kth block.

Pr[ek] = Pr[H(xnk
nk−1+1) > Rk] (3)

=
X

P

X

x
nk−1∈TP

p(xnk−1) Pr[H(xnk
nk−1+1) > Rk] (4)

=
X

P

X

x
nk−1∈TP

p(xnk−1)
X

P̃ s.t.

H(P̃ ) > Rk(P, εk)

X

x
nk
nk−1+1∈P̃

p(x
nk
nk−1+1). (5)

In (3) the rate Rk is random, depending on the empirical
distribution of the first nk−1 source symbols and the margin
εk via (1). In (4) we use P to denote this empirical distri-

bution. Since Q̂k−1 = P , plugging P into (1) gives the, now
non-random, rate used Rk(P, εk). We continue as Pr[ek] ≤

X

P

X

P̃ s.t.

H(P̃ ) > H(P + εk)

exp{−nk−1D(P‖Q) − lkD(P̃‖Q)} (6)

≤
X

P

X

P̃

exp{−lk min
P, P̃ s.t.

H(P̃ ) ≥ H(P + εk)

[D(P‖Q) + D(P̃‖Q)]} (7)

≤ (lk + 1)2 exp{−lk[D(P ∗‖Q) + D(P ∗ + εk‖Q)]} (8)

In (6) we use p(xnk−1) = exp{−nk−1[H(P ) + D(P‖Q)]}
for all sequences xnk−1 ∈ TP , and |TP | ≤ exp{nk−1H(P )},
see [2]. In (7) we use lk = nk−1, and the minimization is over
all distributions, not just those that are types. In (8) P ∗ is
the minimizing distribution. After minimization the expo-
nent does not depend on P or P̃ . We sum over all binary
types of length lk, of which there are lk + 1.

The error exponent of the probability of decoding error
depends on the unknown distribution Q. We study this ex-
ponent to determine a good choice for εk. To do this, we



solve for P ∗ assuming a fixed εk.

d

dP
[D(P‖Q) + D(P + εk‖Q)]

=
d

dP

»

P ln
P

Q
+ (1 − P ) ln

1 − P

1 − Q

+(P + εk) ln
P + εk

Q
+ (1 − P − εk) ln

1 − P − εk

1 − Q

–

= ln

»

P (P + εk)(1 − Q)2

(1 − P )(1 − P − εl)Q2

–

. (9)

Setting (9) equal to zero, and solving for P using the
quadratic equation gives P ∗ =

− εk

2
− 2Q2 −

p

ε2k(1 − 2Q)2 + 4Q2(1 − Q)2

2(1 − 2Q)
. (10)

For any choice of εk, and any source distribution Q, this
value of P ∗ determines the dominant source of decoding er-
ror. Using (10) in (8) yields a bound on the decoding error
for this protocol. Note that because D(P‖Q) is convex in its
arguments, P ∗ ≤ Q ≤ P ∗ + εk.

The error exponent D(P ∗‖Q)+D(P ∗ +εk‖Q) has a par-
ticularly simple form when εk is small. We define P ∗ = Q− ε̄
and P ∗ + εk = Q + ¯̄ε, where εk = ε̄ + ¯̄ε. By the convexity
property just discussed ε̄, ¯̄ε > 0. With these definitions, we
approximate the error exponent when εk is small.

D(P ∗‖Q) + D(P ∗ + εk‖Q) = D(Q − ε̄‖Q) + D(Q + ¯̄ε‖Q)

= (Q − ε̄) ln

»

1 − ε̄

Q

–

+ (1 − Q + ε̄) ln

»

1 +
ε̄

1 − Q

–

+ (Q + ¯̄ε) ln

»

1 +
¯̄ε

Q

–

+ (1 − Q − ¯̄ε) ln

»

1 −
¯̄ε

1 − Q

–

' ε̄2 + ¯̄ε2

2Q(1 − Q)
+

(ε̄3 − ¯̄ε3)(1 − 2Q)

2Q2(1 − Q)2
(11)

≥ ε2k
4Q(1 − Q)

≥ ε2k (12)

In (11) we use ln[1+x] ' x−x2/2. Writing ε̄2+¯̄ε2 = (ε̄+¯̄ε)2−
2ε̄¯̄ε = ε2k − 2ε̄¯̄ε, one can see that (11) is minimized under the
constraint for small εk by selecting ε̄ = ¯̄ε = εk/2. Choosing
Q = 0.5 lower-bounds the quadratic approximation of the
error exponent.

In Figure 2 we plot the error exponent and quadratic
approximation to it for Q = 0.05 and Q = 0.3. The ap-
proximation (12) is quite good, even for large values of εk.
For Q = 0.3, one can barely differentiate the quadratic ap-
proximation to the full solution. The lowest curve in Fig-
ure 2 is the lower-bound to the quadratic approximation with
Q = 0.5.

3.2 Bounding the expected Slepian Wolf rate, E [Rk]

In order to minimize the cost (2) we must also take into
account the second term of (2), E [Rk].

E [Rk] ≤ Pr[H(xnk−1 ) ≤ H(Q + γ)]H(Q + γ + εk)

+ Pr[H(xnk−1 ) > H(Q + γ)] ln 2 (13)

≤ H(Q + γ + εk) + ln 2
X

P s.t.
H(P ) > H(Q + γ + εk)

X

x
nk−1∈TP

p(xnk−1) (14)

≤ H(Q + γ + εk) + ln 2
X

P s.t.
H(P ) > H(Q + γ)

exp{−nk−1D(P‖Q)}

≤ H(Q + γ + εk) + ln 2(lk + 1) exp {−lkD(Q + γ‖Q)} (15)
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Figure 2: Error exponents and quadratic approximations for
Q = 0.05 and Q = 0.3.

In (13) we split the expected rate into two events. The first
is a high-probability event that occurs when the realized en-
tropy is below the source entropy plus a margin γ. The sec-
ond is a low-probability event that occurs when the realized
entropy is large. In the former case, the code rate is upper
bounded by H(Q + γ + εk), while in the latter it is upper
bounded by ln 2. In (14) we upper bound the probability
of the high-probability event by one, and analyze the low-
probability event using techniques similar to those used in
Section 3.1. As in that section, we also examine the small-γ
region which gives,

D(Q + γ‖Q) ' γ2

2Q(1 − Q)
. (16)

3.3 Optimizing the rate margin, εk

We can now understand how εk should be chosen. It is easiest
to see this in the small-εk region. Indeed, the small-εk region
is of great interest as we want to be as efficient as possible
for large data files.

Noting that probability of Pr[ek] in (3) and
Pr[H(xnk−1 ) > H(Q + γ)] in (13) can both be upper
bounded by one, then substituting (8), (10),(15), and (16)
into (2) gives

E [ck] = E [Rk] + ln 2 Pr[ek] ≤ H(Q + γ + εk)

+ ln 2 min

»

1, (lk + 1) exp



−lk
γ2

2Q(1 − Q)

ff–

+ ln 2 min

»

1, (lk + 1)2 exp



−lk
ε2k

4Q(1 − Q)

ff–

(17)

To give the best bound, we want to pick γ as small as possi-
ble. Picking γ = εk/

√
2 balances the exponents. We combine

the exponential terms and use a Taylor series expansion of
the entropy around Q, giving:

E [ck] ≤ H(Q) +
1 +

√
2√

2
ln

»

1 − Q

Q

–

εk

+ 2 ln 2 min

»

1, (lk + 1)2 exp



−lk
ε2k

4Q(1 − Q)

ff

.

–

(18)

In (18), the second term is linear in εk, so we want to pick εk

as small as possible. However, the third term constraints this
choice. The margin εk must go to zero slower than 1/

√
lk,

else the polynomial in lk that pre-multiplies the exponent
will dominate. Note that to study the trade-off for small Q,
one must use a better approximation to the entropy function
than the quadratic one we used. For example ck − H(Q)
should always be less than one bit.



4. PRACTICAL IMPLEMENTATION

In this section, we discuss a practical implementation of the
above protocol. Our implementation uses the LDPC based
Slepian-Wolf construction of [7]. These ideas can be im-
plemented with any other Slepian-Wolf codes. With more
powerful codes, we will see an increase in performance.

LDPC codes [5] are a class of graph-based capacity-
approaching linear block codes. They are usually decoded
using the sum-product algorithm, an inference algorithm
that is exact on trees. Although not exact on “loopy” graphs
(such as those that describe LDPC codes), in practice decod-
ing performance is very good. As the algorithm progresses,
it either converges to a solution that satisfies the code’s con-
straints (most likely the maximum likelihood solution), or
fails to converge at all. We use the latter events to indicate
detected decoding errors for our protocol.

LDPC codes have two characteristics that do not match
the assumptions of our analysis. First, like almost all good
codes, LDPC codes do not respond to all sequences of a par-
ticular type equivalently. Thus, these codes do not match
our assumption of when a decoding error will occur. Sec-
ond, LDPC based Slepian-Wolf systems approach the mini-
mal compression rate bound only for large block lengths. As
is discussed in [7], extra redundancy is needed for the short
block-lengths used for the first few blocks of our protocol.

In our implementation, cypher-text blocks are com-
pressed by finding their syndrome with respect to a LDPC
code’s parity check matrix. The syndrome is the compressed
source information transmitted to the decoder. The decoder
runs the sum product algorithm where the syndrome serves
as the code constraints and the encryption key for determin-
ing likelihood ratios. The likelihoods are determined using

the distribution estimate from the previous blocks, Q̂k−1.
In each of the simulations, blocks of 100, 000 source sym-

bols are generated according to a Bernoulli-Q distribution.
The initial block-length is set to 100, and each successive
block length equals the number of bits sent thus far. The
LDPC parity check matrices are selected based on the guide-
lines of [1]. Each matrix corresponds to a particular rate.
Since not all rates are available, some additional redundancy
is introduced as rates are rounded up to the nearest available
rate. The redundancy parameter εk is set to εk = 2.0/

√
ni−1

(arbitrarily, though resulting in good performance).
We plot the results of simulations in Figure 3. In

these plots the average cumulative redundancy in percent
(averaged over 25 simulations) is plotted versus cumula-
tive block-length, nk. Cumulative redundancy is defined
as

Pk

j=1
[cj − H(Q)] lj/H(Q)nk. The results of the system

are plotted for 2 different source entropy rates: 0.1791 and
0.1944. As an example, to transmit 105 bits for a source en-
tropy H(Q) = 0.1791 bits required an average redundancy
of 49%, or 8,875 bits more than the 17,912 bit minimum
(26, 787 bits total). In these plots, as nk grows the overall
redundancy declines. In addition, for a source of entropy
0.1791 (the other source is omitted for clarity, but is simi-
lar), a bound on the expected cumulative redundancy using
(17) is also plotted, as well as the performance assuming full
knowledge of the source statistics (based on the results of
[7]). Despite the limitations mentioned, and the fact that
our bound omits the cost of feedback, our results perform
well in relation to our bound.

5. CONCLUSIONS

In this work we have presented a protocol for the blind trans-
mission of an encrypted source using a minimal number of
bits. The scheme presented is proven to achieve redundancy
proportional to the inverse of the square root of the block
length, and requires minimal feedback. We present a practi-
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Figure 3: Averaged results of LDPC based implementation.
The horizontal axis is the number of cypher-text bits consid-
ered nk, and the vertical axis is the system redundancy (the
percent of bits used above the entropy rate). As the number
of bits transmitted grows performance improves. Note, the
bound from (17) plotted here excludes feedback costs.

cal implementation of this scheme using LDPC codes, taking
advantage of their decoding error detection capability.

This work suggests many areas for future work. First,
a more efficient retransmission protocol to deal with de-
coding failures is necessary. In particular, rather than re-
transmitting the source in the clear, an incremental hybrid-
ARQ scheme could provide significant improvement in per-
formance. Other extensions include studying more complex
underlying source models. This scheme suggest natural ex-
tensions to both sources with memory and higher order al-
phabets. Still another area for future work is in the consid-
eration of different codes or different decoders for the practi-
cal implementation discussed here. The linear programming
LDPC Decoder [4] guarantee of maximum likelihood decod-
ing or error detection offers promise.
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