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ABSTRACT

Given a multichannel loudspeaker system, in a typical sin-
gle or multiple listener setup, the selection of the crossover
frequency between the sub-woofer and the satellite speak-
ers is important for accurate reproduction of playback sound
from the corresponding channels. Specifically, the combined
sub-woofer and satellite room acoustical response should ex-
hibit negligible variations around the selected crossover fre-
quency and simultaneously allow accurate rendition of au-
dio from the respective channels. In many instances, even
after selecting an appropriate crossover frequency, the final
combined response may yet have substantial variations that
further need to be minimized. In this paper, we present a two-
stage approach for minimizing the variations in the combined
sub-woofer and satellite room response measured at a given
listening position for multichannel audio applications.

1. INTRODUCTION

A typical room is an acoustic enclosure that can be modelled
as a linear system whose behavior at a particular listening
position is characterized by an impulse response, h( n) ;n ∈
{0,1,2, ...}. This is generally called the room impulse re-
sponse and has an associated frequency response, H ( e jw ) ,
which is clearly a function of frequency (i.e., 20 Hz-20 kHz).
Generally, H ( e jw ) is also referred to as the room transfer
function (RTF). The impulse response yields a complete de-
scription of the changes a sound signal undergoes when it
travels from a source to a receiver (microphone/listener). The
signal at a listening position consists of direct path compo-
nents, discrete reflections that arrive a few milliseconds after
the direct sound, as well as a reverberant field component.
Essentially, a room response can be uniquely defined by a

set of spatial co-ordinates li
D= ( xi,yi,zi ) . This assumes that

the source is at origin and the receiver i is at the spatial co-
ordinates, xi,yi and zi, relative to a source in the room.

A typical 5.1 system is shown in Fig. 1, with a system
level description in Fig.2, where the satellites are positioned
surrounding the listener and the sub-woofer may be placed in
the corner or near the edges of a wall. The bass management
filters are standard used in the industry with a crossover fre-
quency of 80 Hz (i.e., the 3 dB point), and the low-pass bass
management filter that is applied to the sub-woofer is Butter-
worth in design having a roll-off rate of about 24 db/octave
beyond 80 Hz, whereas the high-pass Butterworth filter ap-
plied to the satellites has a roll-off rate of about 12 dB/octave
below 80 Hz. The frequency responses of the bass manage-
ment filters, as well as the magnitude of the recombined re-
sponse (i.e., the magnitude of the complex sum of the fil-

ter frequency responses), are shown in Fig. 3. Examples of
other crossover networks that split the signal energy between
the subwoofer and the satellites, according to predetermined
crossover frequency and slopes, can be found in [1, 2, 3].

Figure 1: A 5.1 multichannel system.
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Figure 2: System level description of the 5.1 multichannel
system of Fig. 1.

However, much of the loudspeaker systems are not de-
signed with the 80 Hz crossover rule, and the crossover
frequencies have to be intelligently determined depending
on the speaker capabilities. While the crossover slopes too
can be intelligently determined, the 24 dB/octave and 12
dB/octave slopes can be held constant to give adequately
good performance as shown by the results in this paper.
As an example, individual sub-woofer and satellite (in this
case a center channel) frequency responses (1/3-rd octave
smoothed), as measured in a room with a reverberation time
T60 ≈ .75 sec., are shown in Figs. 4(a) and 4(b) respectively.
Clearly, the satellite is capable of playing audio below 100
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Figure 3: Magnitude response of the standard bass manage-
ment filters and the recombined response.

Hz (up to about 40 Hz), whereas the sub-woofer is most ef-
ficient and generally used for audio playback at frequencies
less than 200 Hz.
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Figure 4: (a) Magnitude Response of the sub-woofer mea-
sured in a reverberant room, (b) magnitude response of the
satellite measured in the same room.

Thus, due to the non-coincident positions of the various
loudspeakers (e.g., the sub-woofer may be at one corner of
the room and the center channel could be at a distance from
the sub-woofer), if the crossover frequency is incorrectly se-
lected, the complex addition of the sub-woofer and center
channel responses could add incoherently thereby creating
a large spectral notch in the crossover region at a listening
position. This large spectral notch contributes to the loss in
acoustical efficiency in playback sound, since much of the
sound in this spectral region will be significantly attenuated.
For example, as shown in Fig. 5, the resulting magnitude
response obtained by summing the impulse responses has a
severe spectral notch for a crossover frequency at 40 Hz (the
low end frequency that the satellite is capable of playing).
This has been verified through real measurements where the
sub-woofer and the satellite channels were excited with a
broadband stimuli (e.g., log-chirp signal) and subsequently
de-convolving the net response from the measured signal.

While room equalization, as shown in Fig. 6, has been
widely used to solve problems in the magnitude response
(e.g., [4], [5]), these equalization filters do not necessarily
solve the problems around the crossover frequency. In fact,
many of these filters are minimum phase and as such may
do little to influence the result around the crossover. How-
ever, while the techniques described in this paper are applied
primarily to responses before equalization, these techniques
can be readily applied after equalization to the filters from
the afore-mentioned references.

Thus, in this paper, we present multiple approaches for
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Figure 5: Magnitude of the net response obtained from using
a crossover frequency of 40 Hz.
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Figure 6: System level description of the 5.1 multichannel
system of Fig. 1 with multiple listener equalization in each
channel.

minimizing the variations due to phase interaction between
non-coincident speakers for better magnitude response con-
trol around the crossover. The analysis and results presented
in this paper does not include the situation where an equal-
ization filter is present in each channel, however it is easy to
extend the principles of this paper to this situation. Accord-
ingly, section 2 presents an objective function based scheme,
for selecting a crossover frequency, for minimizing the spec-
tral notch in the magnitude response around the crossover.
Results obtained from using this technique will also be pre-
sented. Section 3 presents an additional optimization method
to further improve the performance over the method pre-
sented in section 2. Results are also presented in this section.
Section 4 concludes the paper and presents future directions.

2. OBJECTIVE FUNCTION BASED CROSSOVER
FREQUENCY SELECTION

For real-world applications, a typical home theater receiver
includes a selectable (either by an user or automatically as
shown by this paper) finite integer set of crossover frequen-
cies, in 10 Hz increments, from 20 Hz through 200 Hz and
250 Hz (i.e., 20 Hz, 30 Hz, 40 Hz.,..., 200 Hz, 250 Hz).
Thus, although the solution can be found through a gradi-
ent descent optimization, with respect the the 3 dB frequency
of the Butterworth filter, where the objective function would
be the error between the resulting magnitude response and
unity around the crossover region, this is unnecessarily com-
plicated. Clearly, the choice of the crossover frequency is



limited to this finite set of integers, hence a simpler and ef-
fective manner to select a proper choice of the crossover fre-
quency is to characterize the effect of the choice of each of
the selectable integer crossover frequency on the magnitude
response around the crossover.

An objective function that is particularly useful for char-
acterizing the magnitude response is the spectral deviation
measure [4], [?]. Given that the effects of the choice of
the crossover frequency are bandlimited around the crossover
frequency, it will be shown that this measure is quite effec-
tive in predicting the behavior of the resulting magnitude re-
sponse around the crossover. The spectral deviation measure,
s E , which indicates the degree of flatness of the spectrum is

defined as: s E =
√

[ 1
P å P−1

i= 0 ( 10log10 |E ( e jw i ) |− D ) 2 ] where

D = 1/P å P−1
i= 0 10log10 |E (e jw i )| and E ( e jw ) = Hsub ( e jw ) +

Hsat ( e jw ) , and P is the number of points selected around the
crossover region. In this paper, the crossover region will be
considered to be the frequency region between 30 Hz and
200 Hz, as the selectable crossover frequencies were cho-
sen between 40 Hz and 170 Hz based on the loudspeaker
capabilities (viz., neither the sub-woofer nor the satellite had
significant output below 30 Hz as is evident from Fig. 4).

Figs. 7 and 8 show the resulting magnitude responses for
different integer choices of the crossover frequencies from
30 Hz through 100 Hz. The spectral deviation values, as
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Figure 7: Plots of the resulting magnitude response from us-
ing crossover frequencies :(a) 30 Hz, (b) 40 Hz, (c) 50 Hz,
(d) 60 Hz.

a function of the crossover frequency, for the crossover re-
gion around the crossover frequencies are shown in Fig. 9.
Comparing Fig. 9 results with the plots in Figs. 7 and 8, it
can be clearly seen that the spectral deviation measure can be
used to characterize the performance in the crossover region
for a given choice of crossover frequency. The best crossover
frequency is then that which minimizes the spectral devia-
tion measure, in the crossover region, over the integer set of
crossover frequencies. In this example 90 Hz provided the
best choice for the crossover frequency.
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Figure 8: Plots of the resulting magnitude response from us-
ing crossover frequencies : (a) 70 Hz, (b) 80 Hz, (c) 90 Hz,
(d) 100 Hz.
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Figure 9: Spectral deviation versus crossover frequency.

3. OPTIMIZATION OF THE RESPONSE USING
ALL-PASS FILTERS

In [7], we have shown that the phase interaction of the
sub-woofer and the satellite around the crossover frequency
can be minimized by placing an all-pass filter in the satel-
lite channel and minimizing the phase term, expressed
as f sub ( w ) − f sat ( w ) − f AM ( w ) ), where f sub ( w ) , f sat ( w ) ,
f AM ( w ) are the phase spectrum of the sub-woofer, satellite,
and all-pass filter cascade respectively. All-pass filters are
well known to have a unit magnitude response and for in-
troducing frequency dependent group delay. To combat the
effects of incoherent addition of the sub-woofer and satellite
responses, it was shown that it was preferable to include a
second order all pass filter in the satellite channel (e.g., cen-
ter channel). In contrast, if the all-pass cascade were to be
placed in the sub-woofer channel, the net response between
the sub-woofer and the remaining channels (e.g., left, right,
and surrounds) could be affected in an undesirable manner.
Thus, the all pass filter is cascaded with the satellite to re-
move the effects of phase between this satellite and the sub-
woofer channel at a particular listening position. Without
going into details (please refer to [7] for details), the update
mechanism for determining the poles of the all-pass (charac-
terized by ri the magnitude of the pole, and q i the angle of the
pole) for controlling the phase around the crossover region,



by minimizing the objective function J ( n) , are as follows:

AM ( e jw ) =
M

Õ
k = 1

e− jw − rke− jq k

1− rke jq k e− jw
e− jw − rke jq k

1− rke− jq k e− jw (1)

f AM ( w ) =
M

å
k = 1

f ( k )
AM

( w ) (2)

f ( i)
AM

( w ) = −2w −2tan−1 (
ri sin ( w − q i )

1− ri cos( w − q i )
)

− 2tan−1 (
ri sin ( w + q i )

1− ri cos( w + q i )
)

J ( n) =
1
N

N

å
l = 1

W ( w l )( f sub ( w ) − f sat ( w ) − f AM ( w )) 2 (3)

ri ( n + 1) = ri ( n) − m r

2
Ñ ri J ( n)

q i ( n + 1) = q i ( n) − m q
2

Ñ q i J ( n) (4)

where W ( w l ) is a frequency dependent weighting function
chosen unity in the crossover region and care was taken to
ensure the stability of the poles (viz., ri < 1) and M = 9.

Fig. 10 shows an example of of a resulting magnitude
response of a sub-woofer and a satellite where 100 Hz was
found to be the best choice using the spectral deviation mea-
sure. Additional optimization of the combined response, us-
ing an all-pass filter cascade in the satellite yielded better re-
sults with a lower s E as indicated by the dashed curve. The
spectral deviation measures for the two responses around the
crossover were s original

E = 1.13 and s AM
E = 0.61, where s AM

E
was the measure with additional all-pass optimization.
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Figure 10: Blue (solid) curve is the resulting magnitude re-
sponse from using crossover frequency 100 Hz as found by
the minima of the s E measure, whereas black (dashed) curve
is the response after doing additional all-pass filter optimiza-
tion.

4. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we presented an optimization algorithm for se-
lecting the best crossover frequency, from a finite integer set,
using the spectral deviation criteria. It was shown that by per-
forming additional optimization, using an all-pass cascade in

the satellite channel, the spectral deviation measure (or the
deviations in the crossover region) of the resulting response
can be further minimized. Future directions will be directed
towards selecting a crossover frequency and optimizing the
net response for multiple-listener (viz., multiple-response)
applications.
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