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ABSTRACT 
In this paper we provide a method for detection of peaks in 
spectral representations of music signals for the purpose of 
partial tracking. The basic idea is to detect local maxima in 
any digitized signal and use statistical techniques for reject-
ing spurious peaks. Detected peaks are then connected to 
each other to form partial tracks. The performance of our 
algorithm is investigated in two levels. First the output of 
peak detection algorithm is compared with another method. 
Second, these two sets of peaks are fed into our partial track-
ing system and the results are compared, which confirms the 
superiority of our strategy. This superiority is in consistency 
of our method in detecting the valid tracks and preventing 
spurious peaks from forming false tracks. 

1. INTRODUCTION 

In signal processing domain detection of peaks in spectral 
representations can serve as a front-end step in tracking pe-
riodicities and partials within audio signals. This is fre-
quently used in research areas such as music analy-
sis/synthesis  [1], audio restoration  [2], automatic music tran-
scription  [3], and speech analysis  [4].  

There exist a great number of methods for detection of 
peaks in different areas of signal processing domain, many 
of which are developed based on the characteristic of ana-
lyzed signal. A common approach includes defining a 
threshold level, solid or adjustable, and collecting maxima 
beyond the threshold ( [3],  [5]). In another approach, which 
was used for physiological signal, a mathematical frame-
work for behaviour of picks is developed, and peaks (as well 
as troughs) in temporal signals are detected without using 
any threshold level  [6]. 

This paper will proceed with a brief discussion on the ex-
isting peak detection strategies. In section  3 we present de-
tailed discussion on our proposed algorithm. This is fol-
lowed in section 4 by a discussion on estimation of the pa-
rameters introduced. The performance of our technique is 
examined and compared with others in section  5. Since our 
intention for peak detection is tracking of partials in music 
signals, the quality of detected peaks is examined by feeding 
them into our partial tracking system. This is also done for 
detected peaks using method of  [3]. The resulting partial 
tracks are compared at the end. 

2. BACKGROUND 

Two main properties of a good peak detection algorithm are 
inclusion of all the genuine peaks and exclusion of all those 
peaks related to noise or imperfections in estimating the 
spectrum. As it is shown in figure 1, having only the num-
bered peaks as the valuable ones, the solid threshold tech-
niques fails to include #4 and #5 while capturing three spu-
rious peaks. Adjustable threshold, which adjusts itself to the 
overall shape of spectrum, works well by detecting four 
peaks, but still #4 is missing. The mathematical framework 
detects as many as nineteen peaks which are too many but 
comprise all the real peaks. 

 

 
Figure 1: Three peak detection techniques: solid 
threshold (solid line), adjustable threshold (dashed 
line), and mathematical framework (circles) 

Our proposed algorithm consists of two steps which are 
shown in figure 2. In the first step which implements the 
property of inclusion, we use the mathematical framework 
to collect all the peaks that fit into the very definition of a 
peak as a local maximum. These are referred to as raw 
peaks. The implementation of the exclusion part is through 
the process of using statistical properties of a relative num-
ber of data points surrounding each raw peak to examine the 
concreteness of detected peak and rule out any incompetent 
maxima. 
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Figure 2: Peak detection algorithm: two steps with their 
resulting peaks 

 
 



3. DETECTION ALGORITHM 

3.1 Spectral Estimation 
We used Correlogram Spectral Estimation (CSE) technique 
 [7] for estimating the spectrum of our music signal. Here the 
only assumption is that the signal under study is stationary. 
For this, we slice our signal into frames small enough to be 
considered as stationary. Since music signal can be ap-
proximated as stationary for about 25 milliseconds, we se-
lected frames of that length using a hamming window. 
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To gain a better frequency resolution we used a highly 
zero-padded CSE with 32768 points. After estimating the 
spectrum using (1) and (2), we took it into logarithmic scale. 

 
3.2 Mathematical Framework 
Here a peak is defined as a maximal element that locally 
dominates its surrounding points in the magnitude spectrum 
with some positive, predefined threshold. Using this basic 
definition we try to collect all peaks without missing any 
peak that can be considered as a real peak in the next step. 

If we consider our spectral data as the sequence 
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whereδ is the pre-defined threshold and N is the number of 
spectral points. As it can be seen, the first and last points can 
not be considered as peaks since for verifying a peak we 
need at least one predecessor and one successor elements.  

If two or more successive points with equal value satisfy 
the requirements, then we can consider the last point as a 
peak and discard all the preceding ones. This is a rather arbi-
trary decision, but to be more precise, we considered the 
mid-point between the first and the last element. 

After a point-to-point scan on our spectral data, the indi-
ces of all the qualified peaks are collected and stored to be 
processed through the next step. 

 
3.3 Statistical Analysis and Verification 
The first requirement is to set our threshold δ in (3) to a 
value that guarantees capturing all the valuable peaks into 
the set of raw peaks. The second requirement is exclusive-
ness in terms of spurious peaks which is approached statisti-
cally.  

Our best guide for evaluating the quality of a peak is its 
highness among a relative number of its surrounding data 
points. Here peak ip  is defined to be high enough if 
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where [ ]ipm and [ ]ipσ  refer to the mean and standard devia-

tion of the elements surrounding ip  respectively, and d is a 
tuning parameter. We use mean and standard deviation to 
make sure that all the spurious peaks which appear as side 
peaks or simply as small variations as high as δ  are ex-
cluded and parameter d gives us one degree of freedom for 
tuning purposes. 

For verifying a peak we must consider as many surround-
ing points related to that peak as possible. The number of 
neighbouring points is related to the index of ip  or the fre-
quency of the peak. This can be shown as follows. The fun-
damental frequency of standard notes in Western music no-
tation, also called pitch, is given by 
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in which k=0 refers to so-called chamber note ( 4A ) and k 
ranges from -48 to 39 for a standard piano. For a note with 
fundamental frequency at kf  we must consider all the 
neighbouring data points whose frequencies lie between  
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The above range is calculated for the fundamental fre-
quency kf . However, since other harmonics of each note are 

integer-multiples of kf , we can apply this range factor to 
any point in the spectrum.  

Something to be noted here is that although the distance 
between harmonics of the same level grows as we move to 
higher frequencies, they might interfere with harmonics of 
different notes from different levels. Theoretically, this can 
happen when 
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Either one of this inequalities can lead to (7). Since these are 
probable to happen both in theory and real world, some 



valuable peaks may be rejected if they get close to each 
other. However, the algorithm proved to work distinctively 
better than the case with a constant number of surrounding 
points  [3]. 

4. PARAMETER ESTIMATION 

Throughout our evaluations for accuracy of our algorithm, 
the detection accuracy turned out to be most sensitive to the 
value of thresholding factor d. At first, this factor was set 
heuristically but after further investigations it turned out to 
be frequency-dependant. This motivated us to study its sen-
sitivity to frequency and estimate its value for different fre-
quencies by analyzing a large database of music sounds with 
known identities. 

For the purpose of this study, we conducted a statistical 
analysis on 57 notes played individually on different wood-
wind instruments. The aim of this study was to find a first 
and a second candidate for every harmonic of each note and 
find bounds of the thresholding factor in such a way that the 
first candidate is picked up and the second one is ignored, 
i.e. 
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in which 1 ( , )T t f and 2 ( , )T t f are tracks formed by the first 
and second candidates respectively. These are functions of 
both time and frequency since they are formed by connect-
ing similar peaks within the same frequency bin and through 
successive time frames. Using (9), our factor is bounded by 
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The process of finding tracks of first and second candi-
dates was done as follows. The waveform of each individual 
note was windowed into frames of 25 milliseconds length, 
and the spectrum for each frame was estimated using 
method of section 3.1. Each spectrum was partitioned into 
40 bins of length equal to the known fundamental frequency 
and centred at the harmonics of the note. Within each fre-
quency bin, the maximum value and all those peaks that 
were less than 5 dB away from the maximum were collected 
and all peaks below -80 dB were rejected. 

After finding all such peaks for all frequency bins and all 
time frames, tracks of first and second candidates were 
formed by searching within the same frequency bin and 
through successive frames based on the relevance of peaks 
to the expected harmonic in that bin. This process was 
started with the peak with maximum power in the same bin 
of all time frames and continued in forward and backward 
directions. Starting with this global maximum if the follow-
ing frame contained more that one peak, the one which was 
closer in frequency to, and less than 0.0578 kf away from the 
selected peak was considered as the continuation of the track 
for the first candidates. The maximum value among all re-
maining peaks in each frequency bin was added to the track 
of second candidates. If there were no qualified peak for 
either of the tracks in any time frame, the track was termi-

nated, and a new track was initiated in the following frame 
by choosing a peak with maximum power. 

 

 

 
Figure 3: Upper and lower bounds of thresholding fac-
tor (up), and its best value along with the best quadratic 
fit (down) 

After all the tracks had been acquired (a total number of 
916 tracks) they were organized into 80 different groups 
based on their average frequency. Since the sampling fre-
quency is 48000 Hz, then the thi group contains tracks with 
average frequency between 300(i-1) and 300i. For each 
track and its corresponding second candidate the upper and 
lower bounds for the thresholding factor were calculated 
using (10). The upper and lower bound values for each track 
were averaged to yield a single value for each track. The 
mean and standard deviation of upper and lower bound of 
all the tracks within each group were then calculated and 
plotted, which is shown in figure 3. It should be noted that 
only the 33 first groups contained more than one track and 
result is shown for up to 9900 Hz. 

We can also attain a single graph as a representative for 
the best values of the factor for different frequencies, which 
is shown in figure 3. 

5. RESULTS 

5.1 Peak Detection 
We tested our algorithm using artificial and real data, and 
detection result for a short B3 played on the oboe is shown 
in figure 4. Although in this example peaks are hardly recog-
nizable after 6.8 kHz, 37 out of 40 possible peaks are de-
tected and only three peaks are missed, two of which are 
almost buried in the noise surface of higher frequencies. 
Here, the temporal signal was sampled at 48000 points per 
second and our correlogram spectral estimator used 70000 
points which gives rise to a reasonably detailed representa-
tion of about 0.7 point per Hz. The threshold for the raw 
peak detection step was set to 10 dB for which in all tests 
performed on artificial and real data we were able to include 
all the real peaks, and it produced the least computational 
load for the next step. 



 
Figure 4: Detected peaks (circled) for a B3 note played 
on the Oboe 

5.2 Detection Comparison 
For the purpose of comparing our algorithm with existing 
ones, we define the accuracy rate as follows 
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in which dn is the number of detected peaks, fn is the num-

ber of false peaks and en is the number of expected peaks. 
Since the effect of false peaks can be reduced during the 
later process of track formation in our developing project of 
partial tracking, we degraded its role in computing the accu-
racy rate of our algorithm. Other useful factors are 
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Here, dR is the detection rate and fR is the false rate. 
Table 1 contains a comparison between our algorithm and 
the one introduced in  [3]. This result is computed for a range 
of 32 notes and the averaged percentages are shown here. It 
should be noted that unlike our strategy, the adjustable 
threshold in  [3] is highly dependent upon the overall shape 
of the spectrum. Hence, for our comparison, it was tuned to 
yield the best results. 

  
 

dR  fR  
aR  

Our Method 98.3 23.4 86.6 
Method of [3] 80.4 35.2 62.8 

Table 1: Accuracy comparison for peak detection 

5.3 Tracking Comparison 
Since we consider discrete frames of temporal data in esti-
mation of spectrum, for tracking the evolution of frequency 
in time and creating partial tracks we need to make connec-
tion between peaks from adjacent time frames using data 
association techniques. We use Kalman filtering to track 
frequency and power of partials. The state-space evolution 
model for the Kalman tracker is introduced in  [8]. We fed 
the detected peaks in both methods from the previous step 
into the Kalman tracker and the results were compared 
against each other. The factors used for this comparison are 
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in which, dtR is the rate of detected tracks and ftR is the rate 

of false tracks. etn is the number of expected tracks, and 

dtn and ftn are the number of detected tracks and false 
tracks respectively. Table 2 contains the comparison results. 

As we can see, the rate of detected tracks is very close to 
the rate of detected peaks for our method, but this is not the 
case for  [3]. This means that, compared to  [3], our algorithm 
is more consistent in detecting peaks pertaining to the same 
tracks in adjacent time frames and more number of detected 
peaks take part in formation of correct tracks. On the other 
hand, false peaks in our system are less likely to form false 
partial tracks. 

 
 

dtR  ftR  

Our Method 98.2 18.2 
Method of [3] 70.6 34.8 

Table 2: Accuracy comparison after partial tracking 

6. CONCLUSION 

In this paper we presented a peak detection approach with a 
novel strategy in which we first collect all possible peaks 
and then examine their validity by using prior knowledge 
from music signals. This showed to give more accurate re-
sults than where a pre-thresholding is used. Since these 
peaks are used for partial tracking, we tested our result 
through our partial tracking system, in which the accuracy of 
our detection algorithm was confirmed. 
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