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ABSTRACT

The problem of linear prediction for multiple channels of
data sampled at different rates is considered. The predic-
tion error filters in this case are periodically time-varying. A
Levinson-type recursion is developed for the linear predic-
tion parameters. A sliding window formulation is also devel-
oped.

1. INTRODUCTION

In multirate optimal filtering problems [1], we are concerned
with the estimation of a random process d[n] from one or
more observations processes x1,x2, . . . where all of the ob-
servation sequences and the desired process d may be sam-
pled at different rates. A typical example is shown in Fig.
1, where the dots represent samples of the sequences in time.

d[n]

x1[m1]
x2[m2] …

…

…

time

Figure 1: Multirate optimal filtering.

We are generally concerned with causal filtering, i.e., estima-
tion of d using samples of the observations occuring only up
to the current time. The problem is therefore both multirate
and multichannel with respect to the input. The problem of
multiple outputs could also be considered, but this is a trivial
extension.

If the input and output sampling rates are integer-valued,
then the structure of the observations is periodic. Further, if
the input sequences are jointly cyclostationary (see [2] for a
definition) then the optimal linear filter is periodically time-
varying. In this case the set of observations can be grouped
into blocks as shown in Fig. 1 so the problem has struc-
ture within blocks as well as between blocks, which we can
exploit. In this paper, we consider the problem of joint lin-
ear prediction of the inputs. Since linear prediction results
in orthogonalization of the input sequences, it underlies effi-
cient implementation for more general optimal linear filter-
ing problems.

2. LINEAR PREDICTION

For the linear prediction problem, we are concerned with
only the input channels x1,x2, . . . shown in Fig. 1. The goal

is to predict the next input observation from previous obser-
vations in all channels. In most cases this is a single obser-
vation, but in some cases observations from more than one
channel can occur simultaneously. As we have noticed, there
is a block stucture asssociated with this problem. Without
considering the specific stucture of observations within one
block, let P be the number of observations within a block and
Q denote the number of full blocks that are to be used in the
prediction.

We first consider the prediction of an entire block of ob-
servations at once. Let v[m] denote the vector of observations
within the mth block. The components of v[m] are assumed to
be ordered in time from latest to earliest, where an arbitrary
choice is made when more than one observation occurs si-
multaneously. The prediction equation for the blocks is then
given by

v̂[m] = −A′T
1 v[m−1]−A′T

2 v[m−2] · · ·−A′T
Qv[m−Q]

where T denotes transpose and the A′
j satisfy the block Nor-

mal equations1
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where R j = E {v[m]vT[m− j]} and E′ is the prediction error
covariance matrix. We denote the columns of A′

j by a′i, j,
ordered as follows:

A′
j =

[
a′P−1, j a′P−2, j · · · a′0, j

]
, j = 1,2, . . .,Q

We next consider the problem of predicting each of the
points within a block, using the points within that block that
occur earlier in time as well as all of the points in the Q previ-
ous blocks. We are then led to the following set of equations
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where R is the correlation matrix that occurs in (1) above,
and

A j = [ aP−1, j aP−2, j · · · a0, j ] , j = 0,1, . . .,Q

1We assume that the observation processes are jointly stationary; there-
fore the correlation matrix in (1) is block Toeplitz.



The matrix A0 has the unit lower triangular form

A0 =




1 0 · · · 0
αP−1,1 1 · · · 0
αP−1,2 αP−2,1 · · · 0
...

...
. . . 0

αP−1,P−1 αP−2,P−2 · · · 1




while E is upper triangular

E =




σ2
P−1 × ·· · ×

0 σ2
P−2 · · · ×

...
...

. . . ×
0 0 · · · σ2

0




with off-diagonal values × that are typically non-zero, but do
not concern us.

Now, let the vector of nonzero terms in the ith column of
A0 be denoted by αP−i Then the group of terms, which we
denote by a vector with a single index

ai =
[

αT
i−1 aT

i−1,1 aT
i−1,2 · · · aT

i−1,Q
]T

, i = 1, . . .,P
(3)

is the set of coefficients needed to generate the prediction
error for the ith point in the block from the previous data as
we have described it. Note that ai corresponds to column
P− i+1 on the left of (2) (without the zeros), and σ2

i−1 is the
prediction error variance.

3. SOLVING FOR THE MULTIRATE LINEAR
PREDICTION PARAMETERS

To find an efficient solution to the equations (2) for the linear
prediction parameters, multiply (1) by A0 to obtain:
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This equation is of the form (2); thus (2) has the solution

A j = A′
jA0 , j = 1, . . .,Q (4)

if
E′A0 = E (5)

By considering the forms of A0 and E (above), we can rec-
ognize (5) as the set of Normal equations for another linear
prediction problem. Specifically, if e[m] is the prediction er-
ror vector corresponding to the block prediction of v[m], then
the solution of (5) provides the terms necessary for prediction
of the elements of the e[m] within the block. Algebraically,
(5) corresponds to the triangular decomposition problem for
the positive semi-definite error covariance matrix E′.

An efficient solution for the multirate linear prediction
coefficients ai and the prediction error variances σ2

i−1 can be
obtained by using the multichannel Levinson recursion (see
appendix), solving (5) by any method, and then computing
the terms ai, j in (3) from the relation

ai, j = A′
jai,0 , i = 0,1, . . .,P−1 , j = 1, . . .,Q (6)

The prediction error variances are just the diagonal elements
of E.

4. CASE OF SIMULTANEOUS OBSERVATIONS

A slight modification needs to be made when two or more
observations occur simultaneously. Consider the example
shown in Fig. 1. The first observations of x1 and x2 within
the block occur simultaneously. While one could arbitarily
delay one of the observations by a small amount δ and use
the preceeding theory, it is better to consider prediction of the
two observations at once. In this case, the number of points
P in the block is 5, and the matrices A0 and E become

A0 =




1 0 0 0 0
α4,1 1 0 0 0
α4,2 α3,1 1 0 0
α4,3 α3,2 α2,1 1 0
α4,4 α3,3 α2,2 0 1


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and

E =
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4 × × × ×

0 σ2
3 × × ×

0 0 σ2
2 × ×

0 0 0 σ2
1 ρ1,0

0 0 0 ρ0,1 σ2
0




In general, a block of A0 is replaced by the identity matrix,
and the corresponding block of E is replaced by a small co-
variance matrix Σ.

5. STRUCTURE OF THE MULTIRATE
PREDICTION ERROR FILTER

While (6) provides and explicit solution for the linear pre-
diction parameters, an interesting structure for the multirate
prediction error filter arises if the inter-block and intra-block
computations are performed separately. Figure 2 shows this

x1x2

z−1 z−1z−1

Z−1 Z−1 Z−1

S/P

1′A 2′A Q′A
…

Z−1

z−1
P/S

[ ]me ( )
1
kg ( )

2
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1
k
Pg −

prediction
error

Figure 2: Form of the multirate prediction error filter.

structure (assuming no simultaneous observatons). Concep-
tually, the inputs x1,x2, . . . for one block are brought into a
register to form the vector v[m]. This is labeled in the figure
as serial/parallel (S/P) conversion. The blocks are then pro-
cessed through the block prediction error filter to form the
block error e[m]. (Note that this filter could be implemented
in block lattice form instead of the direct form shown here.)
The block errors are then converted to serial form (P/S) and
processed through a within-block prediction error filter. This



filter, which is also shown in direct form, has time-varying

gains g(k)
i whose values change according to the table below:

k g(k)
1 g(k)

2 · · · g(k)
P−1

0 0 0 · · · 0
1 α1,1 0 · · · 0
...

...
...

...
...

P−1 αP−1,1 αP−1,2 · · · αP−1,P−1

The advantage of the form in Fig. 2 is that only the within-
block parameters need to be time-varying. Thus one can save
on storage requirements for the most of the parameters at the
expense of a few additional multiplications and additions.

Although the filter structure is shown with explicit blocks
representing the S/P and P/S conversions, such explicit
blocks are not in fact necessary. Upon careful examination of
the structure one can observe that computations can occur as
soon as each new observation x is available; so the data can
be pipe-lined through the filter. This provides an additonal
advantage.

6. SLIDING WINDOW PREDICTOR

The prediction error filter just described has a variable pre-
diction order as one proceeds through the block because we
always use the full number of points in the last (Qth) block.
Although this does not usually present any problem in prac-
tice, it is still of interest to explore a linear prediction prob-
lem where the order remains fixed, although the filter is time-
varying. The situation is depicted in Fig. 3. Here, as we pre-

…
Q Q−1 1 0

ith point

Figure 3: Sliding window prediction error filter.

dict the ith point of the current block, a corresponding num-
ber of i older points in the last block are dropped out. These
points are indicated by ×’s in Fig. 3.

Now notice that if we have the solution for the block lin-
ear prediction problem (1), where there is a reduced number
of points in the last (Qth) block, then the procedure of section
3 can be applied to obtain the desired sliding window param-
eters. To formulate this block linear prediction problem, let
us replace the unknowns in (1) by A′′

j , j = 1,2, . . .,Q and E′′ ,
where A′′

Q is a “short” block, to obtain

R
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(7)

Note that the last i rows of the A matrix are constrained to
be zero and that the corresponding rows of the matrix on the
right have values that do not concern us.

The efficient solution to (7) requires the consideration of
the backward block preciction problem of order Q−1 where
the points in block Q are predicted from the points in blocks
1 through Q − 1. The Normal equations for this backward
block prediction problem can be writtten as

R(Q−1)
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B′(Q−1)
1
I
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b


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where the superscript denotes the order. Observe that the ma-
trix R(Q−1) can be obtained from the matrix R appearing in
(1) and (2) by striking out the first row and column, and that
the solution to this equation gives the parameters for estimat-
ing the full set of points in the Qth block.

Now, suppose i points are removed from the last block
and we wish to estimate only the k = P− i most recently oc-
curing points using all points in blocks Q through 1 that occur
after the point to be estimated. According to the procedures
developed in sections 2 through 4, we are led to consider the
problem

E′(Q−1)
b

[
I β
0 I

]
=

[
E0 0
E1 Σbb

]
(8)

where β is a k× i matrix and Σbb is the i× i prediction co-
variance matrix for the i removed points. The terms E0 and

E1 are simply appropriate partitions of E′(Q−1)
b . By combin-

ing these last two equations, we arrive at the desired Normal
equations for backward prediction:
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where

B j = B′(Q−1)
j B0 , j = 1, . . .,Q−1 (9)

Eb = E′(Q−1)
b B0 =

[
E0 0
E1 Σbb

]
, B0 =

[
I β
0 I

]

In order to find the A′′
j in (7) we write them as a linear

combination
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G (10)

where the A′(Q−1)
j are the solution to the block Normal equa-

tions (1) when the order is Q−1, and G is a square matrix to



be determined. The right hand side of (7) is then written as
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where E′(Q−1) is the prediction error covariance matrix for
block prediction of order Q−1 and

∆ =
Q−1

∑
j=0

R−Q+ jA
′(Q−1)
j , D =

Q

∑
j=1

R jBQ− j (12)

(It can also be shown that D = ∆TB0.)
Now, let us partitionG and ∆ into blocks of k and i rows:

G =
[

G0
G1

]
, ∆ =

[
∆0
∆1

]

The condition that the solution to (7) be in the form (10) re-
quires that G1 = 0. The condition that the right hand side of
(7) be of the form (11) can be satisfied if we choose

G0 = E−1
0 ∆0 (13)

This completes the solution of (7) using (10) and (11).

7. SUMMARY OF SLIDING WINDOW
ALGORITHM

The following summarizes the necessary steps to compute
the sliding window parameters.
1. Find the forward and backward block linear prediction

parameters up to order Q using the multichannel Levin-
son recursion (see appendix).

2. For i = 1,2, . . .P:
(a) Solve (8) and apply (9) to obtain B j and Eb. (This

can be done recursively on i.)
(b) Compute D from (12) and G0 from (13).
(c) Compute A′′

j and E′′ from (10) and (11).
(d) Solve for the sliding window parameters by substitut-

ing A′′
j for A′

j and E′′ for E′ in section 3 and using
(4), (5) and (6).

8. CONCLUSIONS

In previous work we have considered the problem of optimal
filtering for sets of observation sequences sampled at differ-
ent rates and observed that the optimal linear filter is peri-
odically time-varying. In this paper a first attempt is made
to separate the filter into time-varying and non-time-varying
parts for efficient implementation and estimation of the filter
parameters. In this paper we have chosen to examine the lin-
ear prediction (self-orthogonalization) problem for the input
sequences since this problem is fundamental to more general
optimal filtering problems.

It is shown that if we allow the prediction to be based
on a fixed number of full data blocks and a variable number
of data points within the most recent block, then the prob-
lem separates into a inter-block linear prediction problem

followed by an intra-block linear prediction problem and the
multichannel Levinson recursion can be used to find the filter
parameters. The filter realization is correspondingly separa-
ble into time-varying and non-time-varying parts as shown in
Fig. 2.

While the variable order of the filter is probably not ob-
jectionable in most practical problems, the requirement to
use a filter of fixed order with a sliding window of obser-
vations seems to be at least of theoretical interest. We have
examined this latter problem and found that the solution in-
volves a certain combination of forward and backward linear
prediction problems both between blocks as well as within
blocks. The algorithm derived for computing the sliding
window linear prediction parameters also involves use of the
multichannel Levinson algorithm.

APPENDIX

Multichannel Levinson Recursion [3]
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Note: ∆(q)
b = (∆(q))T
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