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ABSTRACT

This paper presents a stochastic model of the transform domain
εLMS (εTDLMS) algorithm for a nonstationary environment. The
proposed model is derived for Gaussian inputs, high-order
adaptive filter and slow adaptation condition. Through
simulations, we can verify a very good agreement between the
results obtained by the Monte Carlo method and the predictions
from the proposed analytical model.

1. INTRODUCTION

Due to simplicity, robustness and low computational complexity
the LMS algorithm is widely used in adaptive filtering
applications [1]-[3]. This algorithm however presents a severe
limitation when the input signal is correlated; its speed of
convergence is very slow. Narayan et al. [4] have proposed the
LMS algorithm in the transform domain (TDLMS) as an
alternative solution to the convergence problem of the ordinary
LMS algorithm. TDLMS consists simply of the standard LMS
algorithm but having its input signal preprocessed by an
orthogonal transform followed by a power normalization
operation. In practical applications, the transform domain εLMS
(εTDLMS) algorithm is used instead of the ordinary TDLMS one.
The former allows overcoming problems of insufficient spectral
excitation of the input signal, preventing thus possible instability
of the adaptive algorithm.

The statistical analysis of the TDLMS algorithm for
stationary environment can be found in [5]-[8]. However, for
nonstationary environment only a few analyses are presented in
the open literature. In [9] an approach for nonstationary algorithm
analysis by using energy relations is discussed. An interesting
feature of such an analysis is its independence on both particular
data nonlinearity and Gaussian inputs. However, the energy-based
approach does not permit to obtain theoretical models to predict
the evolution of the mean weight behavior as well as the learning
curve.

The aim of this paper is to present stochastic models for the
first and second moment of the adaptive filter weight vector of the
εTDLMS algorithm. The derived expressions are obtained by
considering a system identification problem with a time-varying
plant. Section 2 presents the model used for a time-varying plant.
In Section 3 the analytical expressions for the first and second
moments of the adaptive weight vector are derived. Section 4
shows some simulation results, which ratify the proposed
statistical model. Finally, in Section 5 some conclusions of this
paper are presented.

2. PROBLEM STATEMENT

Let us consider a system identification problem in which the plant
is time-varying with its output given by

T o( ) ( ) ( ) ( )= +d n n n z nx w ,                         (1)

where T( ) [ ( ) ( 1) ( 1)]= − − +"n x n x n x n Nx  denotes the input

signal vector, being { }( )x n  a Gaussian, zero-mean, and stationary

process. Vector o o o o T
0 1 1( ) [ ( ) ( ) ( )]−= " Nn w n w n w nw  represents

the time-varying plant. The measurement noise ( )z n  is i.i.d.,

zero-mean with variance 2σz , and uncorrelated with any other

signal in the system. The time-varying plant vector in the

transform domain is given by o o o o
T 0 1( ) ( ) [ ( ) ( )= =n n w n w nw Tw

o T
1( )]−" Nw n with T  being the orthogonal transform. Similarly,

the input signal vector in the transform domain is
T

T 0 1( ) ( ) [ ( ) ( ) ( )]= = " N -1n n x n x n x nx Tx . By using the

transformed vectors, we can rewrite (1) as follows:

T o
T T( ) ( ) ( ) ( )= +d n n n z nx w .                        (2)

The purpose of the adaptive algorithm is to follow the

variations of o
T ( )nw , which are governed by

o o
T T( 1) ( ) ( )+ = +n n nw w g ,                         (3)

where vector ( )ng  denotes the plant perturbation process, which

is white, zero-mean with variance 2σg .

3. ANALYSIS

In this section we derive analytical expressions for the first and
second moments of the adaptive weight vector considering (3). Let
us start by considering the weight update equation in the transform
domain, given by [8]

1
T T T( 1) ( ) 2 ( ) ( ) ( )−+ = + µn n n e n nw w D x ,            (4)

where T
T 0 1( ) [ ( ) ( ) ( )]= " N -1n w n w n w nw  represents the adaptive

filter weight vector, and 2 2
0 1( ) diag[ ( ) ( )= σ σ "n n nD  2

1( )]−σN n

is the step-size normalizing matrix, with the elements recursively
obtained by [8]

2 2 2 21
( ) ( 1) ( ) ( 1)⎡ ⎤σ ≅ σ − + − σ −⎣ ⎦i i i in n x n n

M
,  0,1, , 1,= −…i N   (5)

where M  is the observation window length.
In the practical algorithm a small positive regularization

parameter ε is added to (5). This parameter, considered in the
model expressions, prevents division by zero and stabilizes the
solution.

The error signal is obtained by

( ) ( ) ( )= −e n d n y n .                               (6)

Substituting (2) and (6) into (4), we get



T T

1 T o T
T T T T T

( 1) ( )

              2 ( ) ( )[ ( ) ( ) ( ) ( ) ( )].−

+ =

+ µ + −

n n

n n n n z n n n

w w

D x x w x w
(7)

By defining the weight-error vector in the transform domain as
o

T T T( 1) ( 1) ( 1)+ = + − +n n nv w w , (7) is then rewritten as

o o 1 T o
T T T T T T T

1 1 T o
T T T T T

( 1) ( ) ( ) ( 1) 2 ( ) ( ) ( ) ( )

2 ( ) ( ) ( ) 2 ( ) ( ) ( )[ ( ) ( )].

−

− −

+ = + − + + µ

+ µ − µ +

n n n n n n n n

n n z n n n n n n

v v w w D x x w

D x D x x v w

(8)

Now, by substituting (3) into (8), the following update
expression is obtained

1 T
T T T T

1
T

( 1) [ 2 ( ) ( ) ( )] ( )

             2 ( ) ( ) ( ) ( ).

−

−

+ = − µ

+ µ −

n n n n n

n n z n n

v I D x x v

D x g
           (9)

In the next sections, the first and second moments of (9) are
derived.

3.1. Analysis assumptions

To carry out the stochastic analysis, the following simplifying
assumptions are considered.
i) ( )ng  is Gaussian, zero-mean, stationary with autocorrelation

matrix given by T 2[ ( ) ( )]= = σqE n nG g g I .

ii) ( )ng  and T ( )nx , and T ( )nv  and T ( )nx  are statistically

independent.

iii) 1( )− nD  and T
T T( ) ( )n nx x  are jointly stationary, such that

1( )− nD  is slowly varying with respect to T
T T( ) ( )n nx x . This

assumption permits to invoke the Averaging Principle [10].
In this way, we can now proceed with the model derivations.

3.2. First moment of T ( )nv

By taking the expectation on both sides of (9), we obtain
1 T

T T T T T

1
T

[ ( 1)] [ ( )] 2 [ ( ) ( ) ( ) ( )]

                    2 [ ( ) ( ) ( )] [ ( )].

−

−

+ = − µ

+ µ −

E n E n E n n n n

E n n z n E n

v v D x x v

D x g
 (10)

By using (i), (ii), and (iii), we get
1

T T T[ ( 1)] { 2 [ ( )] } [ ( )]−+ = − µE n E n E nv I D R v .         (11)

The expectation of 1( )− nD  in the r.h.s. of (11) is determined
by invoking the Averaging Principle, resulting in

2
1 1 2 1

T T[ ( )] [diag( )] [diag( )] .
( 2) ( 2)( 4)

− − −= − ε
− − −

M M
E n

M M M
D R R

(12)

Concerning the derivation of (12), the reader is referred to [8]
for more details. Now, by substituting (12) into (11), we obtain
the model expression for the first moment of T ( )nv , which is

given by

1
T T T T T

2
2 1
T T T

[ ( 1)] [ ( )] 2 [diag( )] [ ( )]
( 2)

2 [diag( )] [ ( )].
( 2)( 4)

−

−

+ = − µ
−

+ µε
− −

M
E n E n E n

M

M
E n

M M

v v R R v

R R v

(13)
3.3. Second moment of T ( )nv

The second moment for the weight-error vector in the transform

domain is obtained by making T
T T( ) [ ( ) ( )]=n E n nK v v . Then,

transposing both sides of (9), performing the product
T

T T( ) ( )n nv v , and taking the expectation on both sides of the

resulting expression, we obtain

T T T 1
T T T T T T

A

T T 1 T
T T T T T

1 T
T T

B

2 1 2 T 1
T T

[ ( 1) ( 1)] [ ( ) ( )] 2 [ ( ) ( ) ( ) ( )]

2 [ ( ) ( ) ( ) ( ) ( )] [ ( ) ( )]

2 [ ( ) ( ) ( ) ( )]

4 [ ( ) ( ) ( ) ( ) ( )]

−

−

−

− −

+ + = + µ

− µ −

+ µ

+ µ
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D x x D
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T T T T

1 T
T

C

1 T T
T T T T

2 1 T T 1
T T T T

2 1 T
T T T
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−
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D x v x x D

D x g

D x x v v

D x x v x D
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D

T T 1
T T T

1 T T T
T T T T

T 1
T

T T 1 T
T T T
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−

−
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v x x D

D x x v g g v

g x D

g v x x D g g

 (14)
To obtain the final form of (14), the expectations in the r.h.s.

must be determined. Let us first consider the terms containing

( )z n , except that with 2 ( )z n . Due to the characteristics of ( )z n ,
the concerning terms are equal to zero.

Now, by using the analysis assumptions (i)-(iii) (Section 3.1),
expectations A, B, C, and D in (14) are given by

T T 1
T T T T

1
T

A)    2 [ ( ) ( )] [ ( ) ( )] [ ( )]

    2 ( ) [ ( )]

−

−

− µ

= − µ

E n n E n n E n

n E n

v v x x D

K R D
2 1 T 1 2

T T

2 1 1 2
T

B)    4 [ ( )] [ ( ) ( )] [ ( )] [ ( )]

    4 [ ( )] [ ( )]

− −

− −

µ

= µ σz

E n E n n E n E z n

E n E n

D x x D

D R D
1 T T

T T T T

1
T

C)  2 [ ( )] [ ( ) ( )] [ ( ) ( )]

   2 [ ( )] ( )

−

−

− µ

= − µ

E n E n n E n n

E n n

D x x v v

D R K
2 1 T T T

T T T T T T

T T T 1
T T T T T T

2 1 1
T T T T

D)    4 [ ( )]{2 [ ( ) ( )] [ ( ) ( )] [ ( ) ( )]

  [ ( ) ( )]tr [ ( ) ( )] [ ( ) ( )] } [ ( )]

  4 [ ( )]{2 ( ) tr[ ( ) ]} [ ( )]

−

−

− −

µ

⎡ ⎤+ ⎣ ⎦

= µ +

E n E n n E n n E n n

E n n E n n E n n E n

E n n n E n

D x x v v x x

x x v v x x D

D R K R R K R D

Now, we can express (14) as follows:
1 1

T T

2 1 1
T T T T

2 2 1 1
z T

( 1) ( ) 2 ( ) [ ( )] 2 [ ( )] ( )

       4 [ ( )]{2 ( ) tr[ ( )]} [ ( )]

       4 [ ( )] [ ( )]

− −

− −

− −

+ = − µ − µ

+ µ +

+ µ σ +

n n n E n E n n

E n n n E n

E n E n

K K K R D D R K

D R K R R R K D

D R D G

(15)
3.4. Learning curve

From (2) and (6), the error signal can be written as
T o T o
T T T T T

T
T T

( ) ( ) ( ) ( ) ( )[ ( ) ( )]

 ( ) ( ) ( ).

= + − +

= −

e n n n z n n n n

z n n n

x w x v w

x v
       (16)

By squaring (16), taking the expectation on both sides of the
resulting expression, and from the definition of ( )z n , one obtains

2 2 T T
T T T T[ ( )] [ ( )] [ ( ) ( ) ( ) ( )]= +E e n E z n E n n n nv x x v .         (17)

The second term in the r.h.s. in (17) is rewritten as
T T T
T T T T T T T[ ( ) ( ) ( ) ( )] { [ ( ) ( )]}=E n n n n E n nv x x v R v v .        (18)

Thus, recalling that T
T T( ) [ ( ) ( )]=n E n nK v v  and by

substituting (18) into (17), the learning curve is given by



2 2
T[ ( )] tr{ ( )]}= σ +zE e n nR K .                      (19)

3.5. Excess error

The excess error is given by

exc Ttr[ ( )]ξ = ∞R K .                               (20)

Following [1] and after some simple algebra, we can express
(15) as follows:

exc 1
T

1 1 2 1
z T

1

1 tr ( [ ( )] )

1
       tr ( [ ( )]) tr ( [ ( )] ) .

4

−

− − −

ξ =
− µ

⎧ ⎫⎡ ⎤× + µσ⎨ ⎬⎣ ⎦µ⎩ ⎭

E n

E n E n

D R

D G D R

    (21)

The difference between (21) and the excess error for a
stationary environment is the term involving matrix G. Such a
difference leads to a larger excess error in a nonstationary
environment as compared with a stationary one [2].

3.6. Misadjustment

Misadjustment M  is obtained from (21) and it is given by

exc
1

min T

2 1 1 1
T

1

1 tr [ ( )]

1
              tr ( [ ( )]) tr ( [ ( )] )

4

−

− − − −

ξ= =
ξ ⎡ ⎤− µ ⎣ ⎦

⎧ ⎫⎡ ⎤× σ + µ⎨ ⎬⎣ ⎦µ⎩ ⎭

M

z

E n

E n E n

D R

D G D R

(22)
The accuracy of (22) is verified in Table 1, which presents

the misadjustment for the cases shown in the section of Simulation
Results.

Table 1. Verification of algorithm misadjustment.

Condition
M

(simulation)
M  from

(22)

opt / 2µ 40.57 43.682α =
opt /10µ 158.90 172.93

(Fig. 1)

opt / 2µ 11.06 11.721α =
opt /10µ 42.56 46.36

(Fig. 2)

3.7. Degree of nonstationarity

The degree of nonstationarity denoted by α  is given in [1, p.
640]. Then, for our case, we can write

1/ 2 2 2 2 1/ 2 1/ 2
T 0 1 T

1 1
[tr ( )] [( ) ] [tr ( )]−

σ
α = = σ + + σ σ =

σ σ σ
" g

N g
z z z

GR R

(23)
4. SIMULATION RESULTS

The proposed model is applied to a system identification problem
in which the accuracy of the proposed model expressions is
assessed for colored Gaussian inputs. The correlated signal is
obtained from an AR(2) process, defined by

1 2( ) ( 1) ( 2) ( )= α − + α − +x n x n x n v n ,             (24)

where ( )v n  is white noise with variance 2σv  such that the

variance of ( )x n  is equal to 1, 1α  and 2α  are the autoregressive

coefficients, with 1 0.1833α = −  and 2 0.85α = . The variance of

the measurement noise ( )z n  is 0.0001 (SNR 40 dB).=  All the

Monte Carlo simulations are obtained from an average of 500
independent runs. The time-varying coefficients of the plant are
given by (3), with the starting coefficient vector obtained from

o
T (0) [sinc(0)=w T  Tsinc(1/ ) sinc( 1/ )]−"N N N  and the

elements of ( )ng  from a white noise process with variance given
by (23), resulting in

2

2
1/ 2

T[tr ( )]

⎛ ⎞ασσ = ⎜ ⎟⎜ ⎟
⎝ ⎠

z
g

R
                              (25)

The orthogonal transform considered is DCT. The step size µ
used (denoted by optµ ) is obtained from (21) to attain a minimum

excess error. The results are obtained by using two nonstationarity
degree values α  and two step-size values equal to opt0.5µ  and

opt0.1µ  for each α  value. The regularization parameter used for

all cases is 0.001ε = .
The curves of Figs. 1 and 2 are obtained for 8=N , 32=M ,

and opt 0.0585µ = . The eigenvalue dispersion of the correlated

input signal is 81  and the degree of nonstationarity is  2 and 1,
respectively, obtained from (23). Figs. 1(a) and (b) illustrate,
respectively, the first and second moments of the adaptive filter
weights obtained from Monte Carlo (MC) simulations and from
the proposed models (13), (15), and (19). For the curves of Fig. 2,
the same parameters previously considered are used, except for

1α = . From these results, we can verify a very good matching
between the curves obtained from simulations and the proposed
analytical models. In addition, from Table 1 we can observe that
the predictions obtained from (22) present a satisfactory accuracy,
as compared with those obtained by simulation.
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Fig. 1. Case for 2α = . Model performance for colored Gaussian
input signal. (a) Mean weight-error vector behavior for the
coefficients 0[ ( )]E v n - 3[ ( )]E v n  for opt0.1 .µ  (Black dashed line)

MC simulation (average of 500 runs); (Gray solid line) proposed
model for opt0.1µ . (b) MSE curves for opt0.1µ  and opt0.5µ .

(Black ragged line) MC simulation; (Gray solid line) proposed
model.
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Fig. 2. Case for 1α = . Model performance for colored Gaussian
input signal. (a) Mean weight-error vector behavior for the
coefficients 0[ ( )]E v n - 3[ ( )]E v n  for opt0.1 .µ  (Black dashed line)

MC simulation (average of 500 runs); (Gray solid line) proposed
model for opt0.1µ . (b) MSE curves for opt0.1µ  and opt0.5µ .

(Black ragged line) MC simulation; (Gray solid line) proposed
model.

5. CONCLUSIONS

A stochastic model for the εTDLMS algorithm in a nonstationary
environment is derived. The theoretical models for the first and
second moment of the weight vector have been derived for
Gaussian inputs, a high-order adaptive filter, and slow adaptation
condition. Through numerical simulations, we have verified a very
good matching between the results obtained by the Monte Carlo
method and the proposed model.
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