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ABSTRACT

This paper deals with constrained binary classification
problems. First, new theoretical decision rules of two such
problems are designed in a Bayesian framework. They are
shown to be functions of the likelihood ratio and thresholds.
Optimal performances of such classifiers can be obtained by
varying only these thresholds. In order to implement such
rules with sampled data, we tried to apply the same princi-
ple using SVMs. We show that varying only the intercept of
the optimal SVM may lead to poor performances except for
minimum error. Especially for first type error classification
problems, an approach to learn SVM parameters (the slope
and the intercept) that always improves the performance cor-
responding to the given constraint, is proposed and experi-
mental results are discussed.

1. INTRODUCTION

Assuming known the a priori probabilities and probability
density functions of classes, many decision rules have been
developed (Bayes rule, Neyman-Pearson test, minimax...)
giving optimal performances for certain performance crite-
ria [1]. Some specific problems may introduce total error
constraint with value smaller than Bayes error probability. In
such a case, solutions including a concept of rejection have
been developed. The improvement of classification is ob-
tained at the expense of a decision discard [2] [3] [4].

This paper deals with constrained binary classification
problems. First type error constrained classification is an ex-
ample of such problems; it consists in minimizing second
type error for a given first type one. In general, classifi-
cation constraints can have more complex expressions, they
can combine several error probabilities and be expressed by
equality constraints, order constraints or both.

In order to introduce constrained binary classification
problems, we consider the Bayesian framework in the first
part of this paper and propose analytical study of two new
problems in section 2. The obtained decision rules consist in
comparing the likelihood ratio with thresholds. Optimal per-
formances of such classifiers are obtained by varying only
these thresholds.

However, in many real world problems described only by
samples set, the probability density functions of classes are
unknown and usually can not be correctly estimated. For
such processes, constrained classification problems where
the subject of little attention until now. In the second part
of this paper, we will consider the particular case of first

type error constrained classification and suggest to use Sup-
port Vector Machines, which are an elegant approach for
high-dimensional classification problems and have good gen-
eralization ability, section 3 is devoted to a short review
on SVMs. In section 4, we show experimentally that for
such classifiers where ROC curves are usually constructed by
varying only the intercept, such a procedure may lead to poor
performances. In fact, the obtained ROC curves do not fit the
optimal one except for the point corresponding to minimum
error. A new approach for learning SVM parameters (slope
and intercept) that improves performances on the point of
the ROC curve corresponding to the given constraint, is pro-
posed. A discussion is given in section 5 and conclusions are
driven in section 6.

2. CONSTRAINED BINARY CLASSIFICATION

2.1 Introduction

Constrained binary classification in a Bayesian framework
always refers to Neyman-Pearson test. This test introduces
on the one hand a constraint (false alarm probability) and on
the other hand a performance criterion to be optimized (non
detection probability) [1]. In general, the constraints can
have more complex expressions. They can combine simul-
taneously several error probabilities; they can be expressed
by equality constraints, order constraints or both. Given a
classification problem characterized by a set of constraints,
two cases arise depending on wether the constraints can be
jointly satisfied or not. If yes, the problem consists in opti-
mizing a performance criterion based on an error probability
or on a given cost function. In the other case, it is necessary
to introduce rejection and the problem consists in minimiz-
ing the reject probability with respect to the constraints. To
illustrate this type of constrained problems we consider the
two following, 2 class (w 1, w 2) problems.

2.2 Binary classification with local constraints

Consider the problem of a binary classifier verifying

P(D1/w 2)≤ e12 and P(D2/w 1)≤ e21, (1)

where e12 ∈ [0,1], e21 ∈ [0,1], Di,i=1,2 the decision of class
w i and (P(Di/w j) ≡ Pi j) the probability to make Di when
the class is w j. The solution of this problem can be seen the
an intersection of the following two symmetrical Neyman-



Pearson tests [1]:
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where P(x/w i)i=1,2 is the probability density function of a
pattern x ∈ Rd in the class w i, and the decision areas Z∗1 and
Z∗2 are determined by the first and the second tests (2) respec-
tively. It is clear that if l ∗1 ≤ l ∗2 the two constraints are jointly
satisfied. An optimal partition (Z1,Z2) can then be found by
minimizing a certain criterion such as Pe, P12 or P21. Con-
sider here the case of minimizing Pe, since a minimum is ob-
tained for Bayes threshold P2/P1 and that Pe increases when
the threshold is shifted, the decision rule is [5]:
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where Pi, i = 1,2, is the a priori probability of the class w i.
On the contrary, if l ∗1 > l ∗2 the constraints can only be sat-
isfied if rejection is introduced, in this case the criterion to
minimize is the reject probability Pr. One may easily deduce
the following decision rule [5] :

P(x/w 1)
P(x/w 2)

{ ≥l ∗1 x is classified in w 1
≤l ∗2 x is classified in w 2
∈]l ∗2 , l ∗1 [ x is rejected

2.3 Binary classification with a constraint on Pe/(1−Pr)

Let examine now a quite different problem, consider the
problem of a binary classifier minimizing the rejection prob-
ability Pr subject to the constraint

Pe

Pd
=

Pe

1−Pr
≤ t with 0≤ t ≤ PB,

where PB is the Bayes error and Pd the decision probability.
The corresponding Lagrangian is

Ł(Zr,Zd , m ) = Pr + m
(
Pe− t (1−Pr)

)
,

with m ≥ 0 is a Lagrange multiplier, Zr the rejection area and
Zd the decision one. It can be shown [5] that the correspond-
ing decision rule minimizing the Lagrangian is:

P(x/w 1)
P(x/w 2)




≥(P2/P1)l x is classified in w 1
≤(P2/P1)l −1 x is classified in w 2
∈](P2/P1)l −1,(P2/P1)l [ x is rejected

where l = m −1−m t
1+m t > 1 and Pe(l )/Pd(l ) = t .

2.4 Conclusion

Optimal decision rules of these two problems and others [5],
like those of the well known: Bayes rule, Neyman-Pearson
test and the minimax test, are all expressed as likelihood ratio
comparisons with thresholds. Such classifiers allow to obtain
optimal performances just by choosing convenient values of

thresholds. But unless we have the true or an estimate of
what the likelihood ratio is, such decision rules can not be
used, for example on sampled data. In next paragraphs, moti-
vated by their good generalization ability, we try to use SVM
for the specific problem of first type error constrained binary
classification on sampled data.

3. SUPPORT VECTOR MACHINES

Suppose we have a labelled training data {xi,yi}, i =
1, ..., l,yi ∈ {−1,+1},xi ∈ Rd , a practical application of the
principle of Structural Risk Minimization (SRM) [6] to the
problem of pattern recognition leads to the definition of Sup-
port Vector Machines (SVM). Support Vector Machines real-
ize the following idea: they map x ∈Rn into a high (possibly
infinite) dimensional space and construct an optimal sepa-
rating hyperplane in this space [7]. The mapping F (.) is
performed by a kernel function K(., .) such that K(x,y) =
F (x) ∗ F (y), the kernel function represents the dot product
of the data in that space. The kernels that have these proper-
ties satisfy the Mercer’s condition [6], i.e. for any g(x) with
finite L2 norm (3), equation 4) must hold. Any positif definite
kernel satisfies this condition [8].

∫ +¥

−¥
g2(x)dx < ¥ (3)

∫ +¥

−¥

∫ +¥

−¥
K(u,v)g(u)g(v)dudv > 0. (4)

Here we consider a kernel Kq depending on a set of parame-
ters q . The decision function given by an SVM is thus:

fq (x) = sign
(

wT f (x)+b
)

= sign
( l

å
i=1

a 0
i yiKq (xi,x)+b

)
, (5)

where w and b are referred to slope and intercept respec-
tively. The coefficients a 0

i are obtained by maximizing the
following functional [7] [9]:

W (a ) = å l
i=1 a i− 1

2 å l
i, j=1 a ia jyiy jKq (xi,x j), subject to

å l
i=1 a iyi = 0 and a i ≥ 0, i = 1, ..., l.

The coefficients a 0
i define the optimal hyperplane with the

maximal distance (in the high dimensional space) to the
closer image F (xi) from the training data, called the max-
imal margin. For the non-separable case, one need to al-
low training errors which results in the so called soft margin
SVM [10], in which the coefficients a 0

i are obtained by max-
imizing the same functional [9]:

W (a ) = å l
i=1 a i− 1

2 å l
i, j=1 a ia jyiy jKq (xi,x j), subject to

å l
i=1 a iyi = 0 and 0≤ a i ≤C, i = 1, ..., l,

where C is the training cost penalizing the training errors, and
will be considered just as another parameter of the SVM:

f(q ,C)(x) = sign
( l

å
i=1

a 0
i yiKq (xi,x)+b

)
, 0≤ a 0

i ≤C. (6)



Figure 1: Data densities, the right one is a top view of
f1(x,y), the left one is a lateral view of f2(x,y).

4. EXPERIMENTAL ANALYSIS

In order to study binary classification with first type error
constraint (P21), we considered two classes of sampled data,
with the same probabilities and probability density functions
(see Figure 1). They are symmetric one to the other accord-
ing to the plane x = 1, and took the form of letter ‘E’. Ex-
periments were driven using 7 training sets of 300 samples
in each class. To learn SVMs we considered a RBF kernel
(characterized by a width s ) Ks (x,y) = exp

(
− s |x− y|2

)
.

We first searched the optimal couple of parameters (C, s )
of the SVM minimizing the generalization error [11]. This
error was computed using the real probability density func-
tions on decision areas (for more accuracy). Figure 2 shows
the decision boundaries obtained by both exact theoretical
rule (Bayes rule) and SVMs, they are very close. To ob-
tain boundaries for the situation where Pe is minimized with
respect to P21 = 0.1, the intercept of optimal hyperplanes
were shifted (by analogy of shifting the decision threshold of
Neyman-Pearson test). The resulting boundaries are reported
on Figure 3. We can clearly see that these boundaries are
very different from the theoretical one. Figure 4 shows ROC
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Figure 2: Partitions corresponding to minimal error.
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Figure 3: Partitions corresponding to P21 = 0.1.

curves (Pe = f (P21)) obtained by varying decision thresholds
for theoretical rule (2) and the intercept b of optimal hyper-
planes for SVMs (5). We can see that the two curves (the-
oretical and SVM ones) are very close one to the other at
the point corresponding to minimum Pe, and become distant
when moving away. That mean that we can not obtain an op-
timal classifier for our problem only by moving the intercept
of SVM. This is clearly seen with the decision boundaries on
figure 3 (the intercepts of optimal hyperplanes were shifted
in order to obtain P21 = 0.1). It is very clear that the partitions
obtained by SVMs in that case are not optimal and are very
far from the optimal one. In order to improve classification
performances for this problem, we considered a new strategy
to select SVM parameters: C, s and b are tuned in order to
optimize Pe subject to P21 = 0.1, i.e. the three parameters are
jointly optimized such that the decision function:

f(q ,C,b)(x) = sign
( l

å
i=1

a 0
i yiKq (xi,x)+b

)
, 0≤ a 0

i ≤C (7)

minimizes Pe verified that P21 = 0.1, where q = s here. Fig-
ure 5 represents the ROC curves of SVMs trained on the pre-
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Figure 4: ROC curves Pe = f (P21) .



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.25

0.3

0.35

0.4

0.45

0.5

P
21

P
e

P
e
 = f(P

21
) ROC curves

Figure 5: ROC curves Pe = f (P21) for both theoretical
(dashed line) and SVM (solid lines) results.

vious 7 training sets using this new strategy. It appears that
the values of Pe corresponding to P21 = 0.1, are all smaller
than the ones obtained by varying only the intercept of opti-
mal SVMs (figure 4). The decision boundaries obtained with
these SVMs are all reported on Figure 6, they are undoubt-
edly closer to the theoretical one.

5. DISCUSSION

These experiments represent a first approach to deal with
constrained binary classification problems, precisely first
type error constrained classification, on sampled data using
SVM. We showed with tests that varying only the intercept
of SVMs, by analogy with shifting thresholds of theoretical
rules, leads to poor performances. Particularly for P21 = 0.1,
we obtained nearly the same value of Pe (0.3 instead of the
optimal value 0,249) for all the training sets. This is due to
the fact that the discriminant functions wT x (characterized by
w) of optimal SVMs are not pertinent for the actual problem.
In order to remedy and obtain better performances, an alter-
native approach to choose SVM’s parameters leading to more
pertinent discriminant functions (or equivalently the slope w)
and that gives better performances for all the training sets, is
introduced. Resulting values of Pe vary between 0.295 and
0.272 with a mean of 0.283, this corresponds to an average
improvement of 0.3−0.283

0.3−0.249 = 34% upon Pe, which is an inter-
esting result.

6. CONCLUSIONS

The study of two particular problems of constrained binary
classification in a Bayesian framework has been driven in this
paper. The obtained decision rules consist in comparing like-
lihood ratio with thresholds depending on the constraints. In
order to infer such decision rules from sampled data using
SVMs, one may try to construct the decision rule by tuning
the intercept of the optimal hyperplane of SVM. The experi-
mental analysis described in section 4 showed that this leads
to poor performances for first type error constrained classi-
fication. In order to improve classification performances for
such problems, a new approach has been proposed to tune
SVM parameters. It consists in determining the optimal val-
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Figure 6: Decision boundaries corresponding to P21 = 0.1:
theoretical (bold solid line) and SVM (sild lines).

ues of these parameters minimizing total error Pe for a given
value of first type error P21. This approach allows to improve
performances, but remains lower than theoretical results. To
go further, an other solution taking into account the classifi-
cation constraint when optimizing the SVM parameters, has
to be found. That will be the subject of future works.
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