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ABSTRACT 
Time-frequency techniques are applied for mixing signals 
from a material inspected by a multiple sensor detection 
system. Ultrasonic sensors are located at the perimeter of a 
rectangular shaped material evaluated in a pulse-echo 
scheme. The resulting mixed signal becomes a high-
resolution time-frequency image of the material. Different 
kinds of classification techniques can be applied to this im-
age in order to obtain the defects in the material. In this pa-
per, a simulation and experimental evaluation of the pro-
posed approach are presented. Several time-frequency trans-
forms and the fuzzy c-means are used. In the simulations, 
backscattering of the material grain is modelled by using 
Gaussian and K distributions with different signal to noise 
ratio parameters. The validity of the presented method is 
assessed through the detection and spatial location of artifi-
cial defects in a material with a rectangular shape. The per-
formance of the classification technique in discerning de-
fects buried in the backscattering from the material grain 
microstructure, is also discussed. 

1. INTRODUCTION 

The significance of combining and separating signals cap-
tured by multiple sensor systems has been recognized 
throughout different studies in diverse areas, such as, ultra-
sound images [1] and radar [2]. Most of the techniques that 
have been used such as beamforming and MUSIC are based 
on uniform linear array signal processing [3]. 

Another technique that has been applied is data fusion 
which consists of the association, correlation, and combina-
tion of data from single or multiple sources for carrying out 
identity and position estimation [4]. In the non-destructive 
evaluation of materials, the main objective of data fusion is 
to improve information for the decision-making process 
through the signal mixture of different inspections of a mate-
rial. One approach consists of mixing decision information 
from different inspection techniques such as transmission-
reception and impact-echo [5].  

Signal information mixing has been applied to increase 
signal bandwidth using a multiple transducer array. It has 
been explored to complement the non available information 
regarding a transducer in some frequency bands with infor-
mation from other transducers. The information lost in some 

transducer frequency bands can be replaced with information 
from other transducers [6].  

This paper proposes a technique for integrating signal 
information and detecting defects in a rectangular shaped 
material evaluated by a multiple sensor system. Signal inte-
gration is based on a sensor trace matching approach and 
time-frequency techniques such as STFT and Choi-Williams 
transforms [7]. Signal integration can obtain high-resolution 
time-frequency material images from a small number of ma-
terial inspections. Applying fuzzy c-means heuristic classifi-
cation to the time-frequency images enables defect detection. 
A mathematical model of the proposed method, simulations 
and experimental results showing its performance are in-
cluded. 

2. MIXING OF SIGNALS 

Figure 1 shows a simulation scenario where a rectangular 
shaped material is evaluated using a multiple sensor system. 
This area is located in the first quadrant of the coordinated 
axes. Four vertical aperture sensors and three horizontal 
aperture sensors can be seen. Two targets located at 
(150,240) and (210,150), and some diagonal trajectories for 
signal mixing are also displayed.  

Original time domain signals are transformed into time-
frequency domain signals by using transforms such as STFT, 
Wigner-Ville and Choi-Williams. The resulting signals in the  
time-frequency domain are arranged into two 3D matrices, 

fH and fV , 

 
Figure 1. Simulation scenario 
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where n is the number of horizontal sensors and m the 
number of vertical sensors, longx is the material length in 
axis x and longy is the material length in axis y. In the time 
domain, H(i,j) is the horizontal sensor i measurement in the 
instant j and V(k,l) is the vertical sensor k  measurement in 
the instant l.  

In the time-frequency domain Hf (i,j,f) is the horizontal 
sensor i measurement in the instant j at the analyzed fre-
quency f and Vf (k,l,f) is the vertical sensor k  measurement in 
the instant l at the analyzed frequency  f  (f=1,.., F). 

The diagonal lines in Figure 1 represent the trajectories 
for obtaining mixed signals from the original ones. The illu-
minated area resulting from the intersection of sensor beams 
(mixing area) has the following dimensions: width = n·longt  
and height = m·longt, where longt is the length covered by 
one sensor in the material perimeter. In the mixing area it is 
possible to accommodate a total of 12 −⋅⋅= longtmndiag  in-
spection diagonals to produce a complete scanning of the 
material. Therefore, the diagonal mixing trajectories can be 
defined as follows, 
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where Btr defines a set of coordinate pairs ),( trtr ba  cor-
responding to each one of the tr signal mixing trajectories. 
xini and xend correspond respectively to the left and right loca-
tions of the vertical sensor set, and yini and yend correspond 
respectively to the lower and upper locations of the horizon-
tal sensor set. Each mixing trajectory is a diagonal line with 
slope s and intersects dtr with axis y. 

The mixing of signals is achieved using two operations: 
Signal Matching and Signal Mixing. Signal matching 
(MATCH) consists of matching the original signals from both 
vertical and horizontal aperture sensors through diagonal 
mixing trajectories. Each point of a diagonal line maps a sig-
nal sample captured by a horizontal sensor and a signal sam-
ple captured by a vertical sensor. These samples can corre-
spond to different instants of time in captured signals due to 
sensor location. MATCH operation must be carried out diag  
times, obtaining diag  pairs of vertical and horizontal signal 
segments which are defined as follows, 

In the time domain, 
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In the time-frequency domain, 
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Segments of signals resulting from the MATCH opera-
tion are processed by the MIX operation to produce a mixed 
signal. The mixing of signals can be carried out using differ-
ent operators such as, mean, product, maximum and mini-
mum. It is defined as follows, 

In the time domain, 

) , (
1tr trtr

diag
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=  (5) 

In the time-frequency domain, 
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The described procedure has been applied for the exam-
ple in Figure 1. The Choi-Williams transform was used with 
Hamming (N/10) time smoothing window, Hamming (N/4) 
frequency smoothing window and kernel width = 1. N is the 
signal length that varies according to the mixing diagonal 
length. The product was used as an operator for signal mix-
ing. Defects were simulated with Gaussian modulated pulses. 
Backscattering from the material grain microstructure was 
simulated by using a Gaussian distribution with SNR=0.9, 
defined as follows, 

variance noise
value peak envelopepulseSNR =  (7) 

The 58800 pixels, (280x210) image in Figure 2 has been 
obtained using 3 A-scan inputs of 280 points and 4 A-scan 
inputs of 210 points. It corresponds to one of the analyzed 
frequencies in the signal spectrum (f = 1,...,3), the central 
sensing frequency. 

3. DEFECT DETECTION 

Heuristic classification using the fuzzy c-means algorithm 
has been applied to acquire information concerning defect 
spatial localization. This algorithm finds structures contained 
within groups of data. These structures are usually classes to 
which objects from the data are assigned [8]. Classical clus-
tering assigns each object to exactly one class, whereas in 
fuzzy clustering, the objects are assigned varying degrees of 
membership to the different classes. 

The fuzzy c-means uses the following definitions. The 
first definition is the Euclidean distance between two objects 
oi and oj. In this application one object is a pixel in the image 
and there are 3 features (S=3) describing each object. These 
features are the values of spatial coordinate x, coordinate y 
and the spectrum value corresponding to one analyzed fre-
quency f at one point of a mixing diagonal trajectory tr.  



Figure 2. Simulated time-frequency material image by cen-
tral frequency (cf) 

 
Firstly, the fuzzy c-means initializes the membership 

values. µik is the membership value of the kth object ok to the 

ith cluster and ]1,0[  ,1
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Calculate the cluster centroids as follows,  
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Calculate the new membership values new
ikµ  using vi as 

follows, 
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If εµµ >−new

ik
, it replaces µ by µ new and finally, recal-

culate the new centroids until the algorithm converges.  
The fuzzy-c means is applied to the F  images produced 

during signal mixing, obtaining a number of centroids for 
each image. The maximum spectrum value centroid is se-
lected from each image and the selected centroids are aver-
aged to provide the coordinates for the estimated defect lo-
calization. These coordinates are defined using the following 
expressions, 
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where xdf  is coordinate x for a selected centroid of an 
image corresponding to analyzed frequency f, and ydf  is co-

ordinate y for a selected centroid of an image corresponding 
to analyzed frequency f. In the eventuality of detecting a 
number of defects, a number of the highest spectrum value 
centroids are selected in order to obtain the coordinates of the 
defects. 

4. RESULTS 

Several simulations were conducted, modelling defects with 
Gaussian, Hamming and Hanning modulated pulses; Gaus-
sian modulated pulses were shown to offer the best results. 
The unity slope was the best value for diagonal mixing tra-
jectories. Simulations were carried out in a scenario using the 
configuration in Figure 1. A defect was located in position 
(150,240) which was simulated with a Gaussian modulated 
pulse with 5 MHz central frequency, 40 MHz sampled and 2 
MHz bandwidth. 

A total of 19,200 simulations were carried out, consist-
ing of 384 groups with 50 simulations in each one. Each 
group was characterized according to the following parame-
ters: a) Time-frequency transform (PWV: Pseudo Wigner-
Ville, SPWV: Smoothed Pseudo Wigner-Ville, CW: Choi-
Williams, ESPEC: Spectrogram, STFT: Short Time Fourier 
Transform, WVLT: Wavelet). b) Signal mixing operator 
(Product, Mean). c) Noise type (Gaussian, K type with 
α =0.5, 1, 3). Furthermore, simulations were made in two 
modalities: employing or not employing a matched filter as 
the signal preprocessing operation, and taking the values 
from the pulse as the filter coefficients. 

In time-frequency transforms the following parameters 
were used: Hamming (N/10) time smoothing window, Ham-
ming (N/4) frequency smoothing window. N is the signal 
length as explained earlier. A kernel width = 1 was used in 
the Choi-Williams transform and the Morlet function was 
used in the Wavelet transform. 

Some of the simulation results of defect detection are 
given in Figure 3 corresponding to K type noise with α =0.5. 
The criterion for the clustering quality used for defect detec-
tion was the partition coefficient which performed better than 
the partition entropy and the proportion exponent. The value 
of fuzziness degree was 1.2. Figure 3 shows the Euclidean 
distance obtained from the difference between the estimated 
defect position and the real defect position for various SNR. 

In different curves “SNR vs. distance”, was observed 
that as the SNR increases, the estimated defect localization 
for different signal mixing operators moves nearer towards 
the real defect localization. In general, the matched filter im-
proved the defect localization for higher SNR (1, 1.2), but 
deteriorates for lower SNR (0.6, 0.8). However, with both 
operators (product and mean), the utilization of a matched 
filter makes the detection process converge more quickly. 

In general, the procedure displaying a more consistent 
behaviour in simulations was the Pseudo Wigner-Ville trans-
form with a matched filter preprocessing operation and the 
product as the mixing operator. In addition, bilinear trans-
forms (PWV, SPWV, CW) have produced better results than 
the linear transforms (STFT, WVLT, ESPEC). 
 



 
Figure 3. Noise K  type with α =0.5 simulation results 

 
For the detection of various defects, a group of specific 

simulations was conducted, revealing that the identification 
of close defects is restricted by the duration of the simulated 
pulses, which can be related to the shape of the defect. 

A real experiment with a 0.15x0.25x0.005 m. duralu-
minium probe was made. The used equipment was: Ultra-
sonic card IPR-100 of Physical Acoustics, 5 MHz transducer 
MSWQC5 KBA of Krautkramer and Tektronix TDS3012 
oscilloscope for digitalizing. The numbers of horizontal and 
vertical measurements were 49 and 29 A-Scans with 2320 
and 3920 samples respectively, see Figure 4. Sampling fre-
quency was 50 MHz. The time-frequency image from mixing 
of vertical and horizontal inspections, corresponding to the 
central frequency (5 MHz) is overwritten with yellow lines 
on Figure 4. It was obtained by using the Pseudo Wigner-
Ville transform and the product as signal mixing operator. 
The three defects (2 holes and 1 crack) in material can be 
seen properly detected. 
 

 
 

Figure 4.Testing material photograph and time-frequency 
image  

 
Two problems have arisen in real measurements that did 

not appear in the simulations, the first one is the multiple 
reflections due to the pulse-echo inspection scheme and the 
second one is hidden defects by other defects found first in 
the ultrasonic beam trajectory. The first problem is fixed by 

using redundant information of the different plane inspec-
tions with the minimum signal mixing operator. For fixing 
the second problem various mixing operators can be applied 
to the original signals to locate the defects. 

5. CONCLUSIONS 

The main results of this paper are listed below. 
A new technique in time-frequency domain has been 

proposed for achieving high resolution images from the mix-
ing of signals detected by multiple sensor systems. 

A detection procedure based on the fuzzy c-means clas-
sification algorithm, based on the use of time-frequency im-
ages, has been proposed. 

By mixing inspections from different planes, some prob-
lems such as multiple reflections and hidden defects can be 
fixed.  

The proposed method has been evaluated using several 
time-frequency techniques in simulations and a real experi-
ment, finding that the Wigner-Ville transform performs better 
in defect spatial localization. 
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