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ABSTRACT
Recently, communication systems with multiple transmission and
reception antennas (MIMO) have been introduced and proven to
be suitable for achieving a high spectral efficiency. Assuming full
channel knowledge at the receiver, so-called sphere detectors have
been shown to solve the maximum likelihood detection problem at
acceptable complexity. In the context of coded transmission, how-
ever, the detector has to generate soft output information for every
transmitted bit. Existing detectors provide this by observing a high
number of hypotheses about the transmitted symbol, which is com-
putationally expensive.

In this paper, we introduce Smart Candidate Adding, a new
scheme that performs multiple directed searches to obtain only a
small set of symbol hypotheses, but with a good representation of
all possibly transmitted bit constellations. Simulation shows that
the new approach outperforms conventional schemes, both in terms
of detection performance and computational complexity.

1. INTRODUCTION

In modern mobile communications systems, it is essential to use
bandwidth very efficiently, i.e. to transmit many data bits per chan-
nel access. Existing modulation schemes are limited due to power
constraints and the achievable signal-to-noise ratio (SNR). An alter-
native are systems with multiple transmission and reception anten-
nas (MIMO) that use spatial diversity for a parallel data transmis-
sion, achieving a higher spectral efficiency for the same SNR.

1.1 System Model

A linear channel with NT transmission and NR reception antennas
can be defined by a complex matrix CNR×NT . We assume the chan-
nel is fast Raleigh fading and ergodic, such that consecutive channel
accesses observe a quasi-static channel, but a high number of ac-
cesses reveals the statistical properties of the channel, i.e. it is pas-
sive, and all elements are independent, identically distributed (i.i.d)
Gaussian random variables with mean zero and E{|Ci j|2} = 1. We
also introduce a channel representation with real elements

HM×L =
[

Re{C} −Im{C}
Im{C} Re{C}

]
with M = 2NR and L = 2NT . A transmission can be stated as

y = Hs+n

where s∈ S is one of QL possible discrete signal vectors transmitted
by the NT antennas during one channel access. In this paper, we use
Q = 4 or Q = 8 for 16-QAM or 64-QAM modulation, respectively.
Transmitted symbols are normalized so that E

{
s2

l

}
= 1, and n rep-

resents additive white Gaussian noise (AWGN) that appears at the
receiver, defined as real i.i.d distributed Gaussian random variables
with zero mean and E

{
n2

i

}
= σ2 = N0

2 . For our simulations, we
can then calculate the SNR, based on the code rate R, as

SNR [dB] = 10 · log10
E {Eb}
E {N0} = 10 · log10

1
log2 Q ·R ·N0

1.2 The Integer Least Squares Problem

A common detection problem is to determine the vector, also re-
ferred to as symbol, that has been transmitted with the highest a
posteriori probability, given the received signal. If all symbols are
equiprobable, we can use Bayes’ theorem to rewrite this problem as
a search for the maximum-likelihood (ML) symbol, i.e.

ŝML = argmax
s∈S

p(s|y) ≡ argmax
s∈S

p(y|s)

From our system model in section 1.1, we can derive

p(y|s) =
1

(2πσ2)
M
2

exp

(
−‖y−Hs‖2

2σ2

)

and conclude that finding the ML symbol is equivalent to solving
the so-called integer least-squares problem [1]

ŝ = argmin
s∈S

‖y−Hs‖2 (1)

2. SPHERE DETECTION

A solution for equation (1) could be approximated by linear equal-
ization [2]. However, the result is not optimal any more after the
final quantization. So-called sphere detectors alleviate the problem
by discretizing every detected real signal component (i.e. every sig-
nal layer), before proceeding with the next component.

2.1 QR-decomposition

We assume M ≥ L, and can then mathematically transform the chan-
nel matrix by performing a so-called QR-decomposition, so that

H = Q

[
R
Ø

]
= [ Q1 Q2 ]

[
R
Ø

]

where Q1,M×L and Q2,M×(M−L) are orthonormal matrixes, RL×L

is upper triangular, and Ø(M−L)×L is a zero matrix. We can then
rewrite equation (1) to [3]

ŝ = argmin
s∈S

∥∥∥∥
[

QT
1

QT
2

]
y−

[
R
Ø

]
s

∥∥∥∥
2

= argmin
s∈S

∥∥∥QT
1 y−Rs

∥∥∥2
+
∥∥∥QT

2 y
∥∥∥2 ≡ argmin

s∈S

∥∥y′ −Rs
∥∥2

(2)

where the term
∥∥QT

2 y
∥∥2

can be omitted in the last step, as it is inde-
pendent of s and has no impact on the arg min operation. The upper
triangular form of matrix R now allows us to iteratively calculate
estimates for the originally transmitted signals sL, sL−1, ..., s1 as

s̃l =

y′l −
L

∑
m=l+1

rlm · ŝm

rll
(3)



and perform a discretization ŝl = �s̃l�, then used for calculating
s̃l−1. After processing all L layers we obtain a full signal vector ŝ,
referred to as a candidate. Alternative discrete signals can be chosen
in each layer to create a search tree, leading to multiple candidates,
i.e. different hypotheses on transmitted symbols. We denote the set
of candidates as C, the corresponding set of data vectors as X .

2.2 Limiting Sphere Searches through Metrics

From equations (2) and (3), we can derive that [3]

‖y−Hŝ‖2 =
∥∥∥QT

1 y−Rŝ
∥∥∥2

+
∥∥∥QT

2 y
∥∥∥2

=
L

∑
l=1

(
y′l −

L

∑
m=l

rml ŝm

)2

+K =
L

∑
l=1

(s̃l − ŝl)2 · r2
ll +K

(4)

where K = 0 if the number of transmission and reception antennas
is equal, which we will assume for simplicity. Hence, the spacing
∆l = |s̃l − ŝl | between the calculated and discretized signal in every
layer can be used to determine the Euclidian distance of the received
signal y to the projection Hŝ of the obtained candidate. This can be
used as a metric to evaluate partial or completed paths in the search
tree and to limit the search to those candidates within a predefined
Euclidian distance R0, by assuring in every detection step that

M(ŝ)L
l =

L

∑
m=l

(ŝm − s̃m)2 · r2
mm ≤ ‖y−Hŝ‖2 ≤ R2

0

2.3 Basic Sphere Search Concepts and Terms

We can state three common sphere search algorithms:
• The Fincke-Pohst algorithm [4, 5] performs a depth-first search

and determines the possible discrete signal values ŝl in each
layer that fulfill the overall radius constraint. The search is con-
tinued with all of these values, starting with the lowest one.

• The Schnorr-Euchner algorithm [6] is similar, but the possible
signals are ordered by their spacing to the calculated s̃l , and
the closest is processed first. This is done by selecting possible
signals in an alternating fashion around the calculated point.

• In contrast, a List-Sequential Sphere Detector (LISS) [7] per-
forms a breadth-first search by adding all new nodes to a large
list, and always processing the node with the lowest metric, re-
gardless which signal layer it represents. The found candidates
will automatically be ordered by ascending metric, i.e. the best
candidate will always be found first.

The first candidate found by the Schnorr-Euchner algorithm is
known as the Babai point [8] ŝBB, and is equivalent to the solu-
tion found by a detector based on successive interference cancella-
tion [9, 10]. The candidate with the lowest metric, i.e. the highest a
posteriori probability, is the maximum-likelihood point ŝML.

2.4 Advanced Search Strategies

Based on the algorithms described in the last section, we distinguish
between four advanced search strategies:
• A. Search within a fixed radius. All candidates within the

Euclidian distance R0 from the received signal are searched.
• B. Search for the best N candidates. All candidates are sorted

by their metric, and the search radius is always set to the Eu-
clidian distance of the N-th best candidate. After the search, we
will have found at least the N candidates with the best metric.

• C. LISS Search for N candidates. The LISS algorithm is used,
until N candidates are found. Due to the properties of the algo-
rithm, we can again be sure to have found the best N candidates.

• D. Search for ML point. The search radius is continuously re-
duced to that of every found candidate. The last found candidate
will then always be the desired ML point.

All strategies in which the search radius is reduced should use the
Schnorr-Euchner algorithm, as this outputs candidates with low
metrics first and thus strongly reduces the size of the search tree.

2.5 Channel Preprocessing

The search complexity can also be reduced if the channel matrix
H is preprocessed before QR-decomposition. The columns of the
matrix should be ordered by increasing SNR, so that the more re-
liable layers are detected first, which can be done by a sorted QR-
decomposition (SQRD) [11], ideally succeeded by a post sorting al-
gorithm (PSA) [11] for a perfect ordering. Additionally, it is reason-
able to consider the noise level during detection so that we achieve
a minimum mean square error (MMSE) at the receiver. This can be
done by extending the channel matrix to [11, 1]

H̄(M+L)×L =
[

H
σIL

]
and ȳ(M+L)×1 =

[
y

OL×1

]
(5)

prior to QR-decomposition. This strongly decreases the complexity
of a search for the ML point, but also leads to the fact that the search
can output a false result and metrics will be calculated wrongly, as
the derivation in (4) is not possible any more. In our simulations,
we use sorted QR-decomposition, either with MMSE channel ex-
tension (MMSE-SQRD) or without (ZF-SQRD).

3. SOFT OUTPUT CALCULATION

For coded transmission, a detector has to provide soft output, i.e.
a posteriori probabilities about each transmitted bit, given the re-
ceived signal. These are stated as log-likelihood ratios (LLR), i.e.

LC(xk|y) = ln
P(xk = 1|y)
P(xk = 0|y)

It is intractable to fully evaluate this equation, but we can approxi-
mate the result using the set X of found candidates

LC(xk|y) ≈ ln

∑
x̂∈{X |x̂k=1}

p(y|x̂)

∑
x̂∈{X |x̂k=0}

p(y|x̂)

A problem arises if all candidates in the set have the same value for
a certain bit, i.e. ∃k,b : ∀x̂ ∈ X : x̂k = b. In this case there is no
counter-hypothesis for the bit, leading to an infinite log-likelihood
ratio. Different schemes exist in literature to deal with this problem:
• Bit Flipping [12]. A new candidate is created by taking x̂ML

and flipping the desired bit value xk. Its metric then has to be re-
calculated for all layers below and including the one in which xk
resides. However, due to the correlation between signal layers,
there will most likely exist a better candidate fulfilling xk �= b,
so that the probability P(xk �= b) will be underestimated.

• Radius Limitation or LLR Clipping [13]. Again, a new can-
didate is created from x̂ML, but now its metric is set to that of a
virtual candidate positioned on the search radius. Alternatively,
it is possible to limit the LLR values, e.g. |LD(xk|y)| ≤ ε . In
both cases the computational effort is negligible, but the proba-
bility P(xk �= b) might now be strongly overestimated.

• Path augmentation [7]. This scheme uses the information
stored in the incomplete paths of the search tree. Any such
path, fulfilling xk �= b, with signal elements ŝL, ŝL−1, ..., ŝm can
be completed to a full candidate by the unconstrained (s̃l) or dis-
cretized (ŝl) linear equalization solution (ZF or MMSE), or by
’soft-mapping’ available a priori information. The last two ap-
proaches require the calculation of a new metric, and the prob-
ability P(xk �= b) might again be underestimated due to signal
layer correlation. According to [7], metric calculation can be
omitted when the unconstrained ZF-solution is used, as then
∀1 ≤ l ≤ m − 1 : ∆l = 0, hence the metric does not increase



below layer m. This, however, can lead to a new candidate with
a strongly overestimated a posteriori probability.

None of the approaches appears to be very accurate, and in some
cases the metric calculations are computationally expensive. We
thus introduce a new scheme that performs constrained searches to
create only a small but very representative set of candidates.

4. SMART CANDIDATE ADDING (SCA)

The new scheme is based on the following steps:

1. We search for the ML point (strategy D in section 2.4). For 16-
QAM, this leads to about 3 candidates on average for ZF-SQRD,
and 1.5 candidates for MMSE-SQRD.

2. We then select bits that are not represented sufficiently by the
obtained set of candidates, e.g. where no counter-hypothesis
exists, or where the LLR value exceeds a certain limit.

3. For each of these bits, we perform so-called constrained
searches, i.e. searches for the ML point using a modified
Schnorr-Euchner algorithm, where the investigated bit is fixed
to the desired value. We can determine the constrained Babai
point ŝBB[xk �= b], or search for the constrained ML point
ŝML[xk �= b], i.e. the most likely candidate under the constraint
xk �= b. We will refer to these search options as SCA BB and
SCA ML. Other compromises are thinkable, e.g. to search for
the constrained Babai point plus a predefined number of better
candidates. Thus, the tradeoff between performance and com-
plexity can be adjusted to the application’s requirements.

4. For 16-QAM, an average of about 13 (ZF-SQRD) or 14
(MMSE-SQRD) constrained searches are performed, leading to
a total of 16 candidates on average for SCA BB, or 34 (ZF-
SQRD) or 25 (MMSE-SQRD) candidates for SCA ML.

Figure 1 illustrates a typical search tree after one bit has been in-
vestigated. The candidates are displayed as small circles; their dis-
tance to the tree center is equivalent to their Euclidian distance to
the received signal. The grey candidates are from the original, un-
constrained search, all containing xk = b, the black ones have been
added through a search constrained to xk �= b.
A constrained search only yields optimal results if the signal layer
containing the investigated bit is detected first. Otherwise layers
detected in advance could not be reasonably evaluated by their met-
ric, i.e. a tree path within these layers might appear to have a very
bad metric, but finally lead to the constrained ML candidate for
the investigated bit. We thus suggest to perform L different QR-
decompositions, so that each signal layer has the highest column
index once, as done efficiently by the algorithm shown in table 1
and based on [11].

Figure 1: Typical search tree after smart candidate adding.

5. SIMULATION

We will compare the complexity and performance of a sphere search
for the 50 or 250 best candidates using strategy B from section 2.4
to that of the new approach, in the versions SCA BB or SCA ML.

Multiple-SQRD()
Input: Channel matrix HM×L (or H̄(M+L)×L for MMSE)
Output: Unitary Qi,M×L (or Q̄i,(M+L)×L), upper-triangular Ri,L×L, Pi,L×L

(1) R := 0, Q := H initialize matrixes
(2) for (i := 1...(L−1)) { all columns except last one
(3) Qi := Q; Ri := R; Pi := P copy Q, R and P matrixes
(4) Partial-SQRD(Qi, Ri, Pi, i, L, true) do special QR decomposition
(5) Partial-SQRD(Q, R, P, i, i, false) do next step of QR decomp.
(6) }
(7) Partial-SQRD(Q, R, P, L, L, false) do last step of QR decomp.
(8) QL := Q; RL := R; PL := P copy Q, R and P matrixes

Partial-SQRD()
Input: Q, R (or MMSE equiv.), P, column indices i1, i2, boolean btoback
Output: Output is written back into input matrixes

(1) for (i := i1...i2) { loop through desired columns
(2) if (i = i1 ∨¬btoback) find column with smallest norm
(3) k := argmink′=i1 ...L q

T
k′qk′ by searching all columns

(4) else k := argmink′=i1 ...L−1 q
T
k′qk′ or all columns except last one

(5) if (i = i1 ∧btoback) swap cols k, L in P, R and first L+ i−1 rows of Q
(6) else swap cols k, i in P, R and first L+ i−1 rows of Q
(7) rii :=

√
qT

i qi set entry to column norm
(8) qi := qi/rii normalize column
(9) for (k := i+1...L) { loop through remain. columns

(10) rik := qT
i qk determine column correlation

(11) qk := qk − rik ·qi remove correlation
(12) }
(13) }

Table 1: Algorithm for multiple sorted QR-decompositions.

5.1 Setup

All simulations are based on Turbo coded transmission, using a
standard PCCC with (7R,5) constituent convolutional codes. The
block length is 8920 bits and a code rate of R = 1/2 is obtained
by alternately puncturing parity bits at the output of the constituent
encoders. We use two different setups:

• Decoder iterations. After an initial detection process, the soft
output is sent through 8 internal decoder iterations.

• Detector iterations. Again, 8 turbo decoder iterations are per-
formed, but the first 4 are succeeded by additional detection pro-
cesses based on a priori information from the last decoding step
(see [7]). Thus, the initial detection is followed by one internal
decoder loop, then the next detection is performed, again fol-
lowed by one internal decoder loop, etc. Note that this setup
deviates slightly from that of other papers, e.g. [13].

5.2 Performance

Figure 2 shows the BER of the approaches as a function of SNR.
The respective Shannon limits have been added according to [13].
For 16-QAM and ZF-SQRD, a search for the best 250 candidates
has its waterfall region at 8.2dB or 7.1dB, for pure decoder or de-
tector iterations, respectively. This corresponds to [13], considering
that we are using less candidates and a different setup.

In general, we can observe that conventional schemes can be
improved by about 1.5dB if detector iterations are used. The
new schemes, however, improve by about 3dB, as the constrained
searches explore the signal space in a more sophisticated way,
providing a higher amount of information to the decoder. When
MMSE-SQRD preprocessing is employed instead of ZF-SQRD, the
performance of conventional schemes is degraded by about 0.5dB,
due to the mentioned falsely calculated metrics, whereas SCA ML
performance remains fairly unchanged. SCA BB even improves,
as preprocessing causes constrained Babai and ML points to of-
ten be equivalent, so that the difference between SCA BB and
SCA ML diminishes. SCA can strongly outperform conventional
sphere searches, especially with MMSE-SQRD preprocessing. The
performance gap increases for 64-QAM modulation, as here a sym-
bol contains more bits, and many of these will be under-represented
in the set of candidates provided by a conventional search scheme.



Figure 2: Performance and complexity measurements, for 16-QAM or 64-QAM modulation and ZF-SQRD or MMSE-SQRD preprocessing.

5.3 Complexity

Figure 2 also shows the average number of floating point operations
needed for one detection process of one symbol, including data ma-
nipulation and comparison, but excluding data copying. The mea-
surements have been performed at 8dB SNR (16-QAM) and 12dB
SNR (64-QAM), i.e. signal-to-noise ratios close to the average wa-
terfall region of the approaches. Note that for detector iterations, the
stated effort has to be multiplied by 5. Performing sorted or multiple
QR-decomposition requires 3052 or 15673 FLOPS, respectively,
for a 4x4 MIMO system using MMSE-SQRD, and should thus be
negligible if the channel remains constant over multiple symbols.

We can see that MMSE-SQRD preprocessing decreases the
complexity of all approaches. The SCA approaches generally ap-
pear to be very compact, even though the performance is often
comparable to or even exceeds that of conventional searches with a
higher complexity. SCA ML appears to be unsuitable for 64-QAM
modulation, as the number of investigated bits is high and complex
constrained searches have to be performed. However, the SCA BB
approach using MMSE-SQRD preprocessing attracts our attention,
as it is very compact and predictable, as a search for a constrained
Babai point has a determinable complexity per investigated bit. It
reaches (16-QAM) or even outperforms (64-QAM) a conventional
search for 250 candidates, even though it requires less than 15% of
the respective computational effort.

6. CONCLUSIONS

The simulations have shown that smart candidate adding can
achieve a better ratio of performance per computational effort for
the detection of complex symbols within applications using coded
transmission. Especially the scheme SCA BB has proven to be very
compact and determinable and can nevertheless compete in perfor-
mance with conventional sphere searches involving a much higher
complexity. A strong performance improvement is observable when
detector iterations are used, due to the higher amount of information
provided by an SCA detector compared to conventional schemes.
The additional preprocessing effort required for smart candidate

adding, to supply multiple QR-decompositions, is low compared
to the general effort needed for detection and decoding, especially
if the channel remains constant over a long period of time, as can
for example be expected in short range scenarios with low mobility.
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