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ABSTRACT

In this paper we deal with the problem of frontal face de-
tection using Support Vector Data Description (SVDD) to
characterize textural attributes of faces. The SVDD classifier
relies on PCA features of face samples to obtain a decision
boundary around the face data without using information of
negative examples (outliers). We analyze the performance
of the classifier for different dimensionalities of the feature
space and for different selections of the SVDD parameters.
Experimental results show that the SVDD can be adopted as
an effective tool for making a face detector as a combination
of multiple simple one-class classifiers.

1. INTRODUCTION

Face detection is usually approached, in pattern recognition
terms, as a two-class classification problem. Two classes,
face and no-face, are modeled using training samples of face
and no-face patterns and a decision boundary between the
two classes is inferred.

However, the two classes are not equally complex. Faces
have a common structure with the same configuration of fa-
cial features, so it is natural to think of a face model. On the
contrary, the no-face class is broader and richer. Although
negative examples are abundant, those that are useful from a
learning point of view are very difficult to define and char-
acterize. One possible solution is to build a ’near-face’ class
model, using patterns obtained as misclassifications in early
stages of the training phase [8]. In this case, an extremely
large set of examples is needed in order to learn the task with
the desired accuracy.

Our approach to face detection is as a one-class classifi-
cation problem, where an object has to be classified as target
object (face) or outlier (no-face). In one-class classification
it is assumed that only information of the target class is avail-
able. In this context, we are developing a region-based face
detection and segmentation technique (partially described in
[4]) based on the combination of multiple one-class face clas-
sifiers.

Instead of looking at all possible pixel locations and all
possible scales, the detection algorithm bases its analysis
strategy on a reduced set of regions that represent the image
content at different scales of resolution. For each candidate
region, a set of simple classifiers that rely on different shape,
color and texture attributes is evaluated. The outputs of the
classifiers are combined into a final face likelihood.

In this paper we concentrate on textural attributes of
faces. Statistical techniques based on texture, or ’appearance
based methods’, are widely adopted for face detection.

Moghadam and Pentland [6] and Sung and Poggio [8]
make use of an eigenface method to model the face class
using the ’distance in the feature space’ (DIFS) and ’distance
from the face space’ (DFFS) criteria (see Section 2).

Osuna et al. [7] propose an SVM-based approach to
frontal-view face detection. This method seeks to learn the
boundary between face and no-face patterns. After learning,
only examples of face and no-face patterns located on the
boundary are selected to build the decision function.

One of the state of the art face detectors is the system pre-
sented by Viola-Jones [11]. Weak classifiers based on sim-
ple, local, Haar-like features are boosted into a single strong
classifier. Strong classifiers are then combined in a coarse to
fine cascade which allows background regions to be quickly
discarded. The technique is very fast but requires a hard
training with a large number of face and no-face patterns.

The techniques mentioned above detect faces by scan-
ning the image at multiple scales and locations. The anal-
ysis is performed on each image sub-window. A complete
discussion of other appearance based techniques and other
approaches to face detection can be found in [12].

The goal of this paper is to analyze the use of the Support
Vector Data Description classifier (SVDD) based on PCA
features as an alternative to the texture classifier based on
DIFF that has been extensively used in the literature and
is currently implemented in our system. Sections 2 and 3
present the eigenface and SVDD formulation, respectively.
Section 4 describes our experiments and results, and finally
some conclusions are drawn in Section 5.

2. EIGENFACES

Given a collection of n by m pixel training images repre-
sented as vectors of size N = nm in an N-dimensional space,
Principal Component Analysis (PCA) defines a transforma-
tion from RN to a lower dimensional space RM , M < N, de-
fined by z = W t(x− m ), where m is the sample mean.

The column vectors of W , {wi}i=1...M , are the orthonor-
mal axes that capture most of the variance present in the data.
These column vectors are the M eigenvectors of the data co-
variance matrix with largest eigenvalues.

When the PCA is applied to face images, the eigenvec-
tors are called eigenfaces. It is assumed that the face class
lies in the subspace F =< wi >i=1...M spanned by the first
M eigenvectors of a PCA computed on the training dataset.
Traditionally, two measures are used for face detection:

• Distance in the feature space (DIFS): A Gaussian
model is assumed for the face class in the subspace. The
similarity measure between a candidate x and the face



class is the Mahalanobis distance in the subspace (the
distance between x and the sample mean x̄).

DIFS(x) =
M

å
i=1

yi
2

l i
(1)

where yi is the projection of the mean normalized vector
x− x̄ on the ith-eigenvector and l i is the ith-eigenvalue.

• Distance from the feature space (DFFS): Another sim-
ilarity measure between a candidate and the face class is
the reconstruction error, the Euclidean distance between
the candidate and its projection on the subspace.

DFFS(x) =
N

å
i=M+1

yi
2 = ‖x− x̄‖2−

M

å
i=1

yi
2 (2)

DIFS defines, in the subspace F , concentric ellipses of
points that are equidistant from the sample mean (in the
sense of the Mahalanobis distance). Applying a threshold
on this distance, an elliptical boundary of the face class is
obtained. DFFS is a distance in the orthogonal subspace F⊥.
Note that DIFS and DFFS provide complementary informa-
tion and may thus be combined [6].

3. SUPPORT VECTOR DATA DESCRIPTION

Support Vector Data Description was developed by Tax and
Duin [10] to solve one-class classification problems.

Inspired by the Support Vector Machine learning theory,
SVDD obtains a boundary around the target data set; this
boundary is used to decide whether new objects are target
objects or outliers.

Given a set of training target data {xi}, i = 1, ...,N, the
simplest form of SVDD defines an hypersphere around the
data. The sphere is characterized by a center a and a radius R.
The goal is to minimize the volume of the sphere -minimize
R2- keeping all the training objects inside its boundary.

The structural error to minimize is:

F(R,a) = R2 (3)

with the constraints:

‖xi−a‖2 ≤ R2, ∀i (4)

To allow outliers in the training set, the constraints are
relaxed by introducing slack variables x i; the minimization
problem turns into:

F(R,a) = R2 +C å
i

x i (5)

with the constraints:

‖xi−a‖2 ≤ R2 + x i, x i ≥ 0 ∀i (6)

The parameter C controls the tradeoff between errors and
the volume of the description.

By introducing Lagrange multipliers a i and g i, the fol-
lowing Lagrangian is obtained:

L(R,a, x , a , g ) = R2 +C å
i

x i−

− å
i

a i(R2 + x − (xi.xi−2a.xi +a.a))− å
i

g ix i (7)

L has to be minimized with respect to R, a and x i and
maximized with respect to a i and g i. Solving the partial
derivatives of L the following constraints are found:

å
i

a i = 1 (8)

a = å
i

a ixi (9)

0≤ a i ≤C (10)

Replacing equations (8-10) into equation (7), the La-
grangian is:

L = å
i

a i(xi.xi)− å
i, j

a ia j(xi.x j) (11)

The maximization of (11) gives a set {a i}. Objects xi
with a i > 0 are called the support vectors (SV) of the de-
scription. Support vectors lie on the boundary (if 0 < a i <C)
or outside the boundary (if a i =C) of the sphere that contains
the data. Equation (9) shows that the center of the sphere is
a linear combination of the support vectors.

A new object z is accepted as a target object if it is inside
the description. Hence, the following condition has to be
verified:

‖z−a‖2 = (z.z)−2 å
i

a i(z.xi)+ å
i, j

a ia j(xi.x j)≤ R2 (12)

This formulation of SVDD can be extended to obtain a
more flexible description. Data is mapped nonlinearly into a
higher dimensional space where a hyperspherical description
can be found. The mapping is performed implicitly, replac-
ing the inner products in (11) by a kernel function:

K(xi,x j) = (F (xi).F (x j)) (13)

Several kernel functions have been proposed in [10]. In
our experiments we use a Gaussian kernel of the form:

K(xi,x j) = exp(
−‖xi− x j‖2

s2 ) (14)

This kernel is independent of the position of the data with
respect to the origin since only uses distances between ob-
jects. The parameter s is a width parameter that controls how
tight the description is around the data.

Using this kernel, a new object z is accepted if:

å
i

a i exp(
−‖z− xi‖2

s2 )≥ 1
2
(−R2 +B) (15)

where B depends only on the support vectors.
This function is a threshold on a weighted sum of Gaus-

sians, so the boundary description is strongly influenced by
the width parameter s. For small values of s all the objects
tend to be support vectors. The description approximates a
Parzen density estimation with a small width parameter. For
large values of s, the SVDD description approximates the
original spherical solution. For intermediate values of s, a
weighted Parzen density is obtained.

Figure 1 shows the descriptions obtained for different
values of s, using as feature space the first two PCA projec-
tions of a set of face images (see Section 4).



−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
sigma= 0.1

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
sigma= 0.4

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
sigma= 1.2

Figure 1: Scatterplots and data descriptions for the first two PCA projections of a training set of face images. Gaussian kernels with
different widths (s = 0.1, 0.4, 1.2) are used. The solid lines show the description boundaries.

By increasing s, the number of support vectors decreases.
When the training set represents the true target distribution,
the fraction of support vectors gives an estimate of the error
on the target set. Then, as s increases, the number of sup-
port vectors and hence the error on the target set decreases.
However, when the description boundary is larger, more out-
liers become inside the description, so the number of false
negatives also increases.

4. EXPERIMENTS

The use of eigenfaces to describe facial texture is appeal-
ing because it reduces the dimensionality of the input feature
space and thus less samples are needed to train the classifier.
Another reason is that eigenfaces proved to be robust features
in real face applications.

We propose to use SVDDs trained on PCA features to
model the face class boundary. We want to compare the per-
formance of SVDDs with the elliptical boundaries obtained
with the DIFS classifier and analyze the number of features
that are needed to build the face class boundary and the se-
lection of parameters for the SVDDs.

All the experiments with SVDDs were performed with
Matlab PRTools4 [2] and dd tools1.11 [9].

4.1 Training and test sets

The first set of experiments uses for training a subset of 800
images from the XM2VTS [5] database (200 different in-
dividuals, 4 samples per individual). Faces were manually
cropped and rescaled to 40x60 pixels. This set is used to
train the PCA and the SVDDs.

In the second set of experiments, the training set consists
of 1040 face images from the Spanish part of Banca database
(g1 sets from all the controlled sessions).

The test set contains faces from the following databases:
BioID [3] (400 images), Banca [1] (1040 images in g2
sets from all controlled sessions in the Spanish part) and
XM2VTS (400 images not included in the training set).

The negative examples for all the experiments were col-
lected from various images not containing faces and from the
background of images that contained a face. We use a total
of 12000 no-face images. These samples are only used to test
the classifiers.

4.2 Results

The SVDD formulation presented in Section 3 corresponds
to a hard-decision classifier; the output is 1 or 0. To compare
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Figure 2: ROC curves: (a) DIFS with M=10 and XM2VTS test
set, (b) SVDD with M=10, s=0.2, and XM2VTS test set, (c) DIFS
with M=10 and complete test set, (d) SVDD with M=10 and com-
plete test set.

the performances of SVDDs and DIFS and to be able to com-
bine the SVDD with other classifiers we transform it into a
soft-decision classifier.

For an input pattern z, the output of the SVDD is now:

d(z) = å
i

a i exp(
−‖z− xi‖2

s2 ) (16)

Varying a threshold on this distance, we may compute
the ROC curve (targets accepted vs. outliers accepted) for
the classifier.

First, we use the same database XM2VTS for training
and for test. In this case, the training set is a representative
sample from the face class distribution; both classifiers per-
form well and SVDD outperforms DIFS. Figure 2-a shows
the best ROC obtained for DIFS, which corresponds to a fea-
ture space of dimension 10. For the same dimensionality, the
performance of the SVDD (for s=0.2) is clearly better (Fig-
ure 2-b).

In the second case, XM2VTS is used for training but the
test set contains images from other databases (BIO, Banca).
XM2VTS images were acquired under quite controlled con-
ditions. Faces are frontal and have a neutral expression.
Banca and BIO faces, on the contrary, present a large vari-
ability in illumination and facial expressions. Now the train-
ing data distribution is very different from the test set dis-
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Figure 3: ROC curves: (a) DIFS with M=100 and Banca test
set, (b) SVDD with M=50, s=0.2, and Banca test set, (c) DIFS with
M=100 and complete test set, (d) SVDD with M=50, s=0.2 and
complete test set.

tribution, so the SVDD overtrains on the training data and
its performance degrades. DIFS, which finds an ellipti-
cal boundary around the data, performs slightly better than
SVDD. Figures 2-c and 2-d show the ROC curves for DIFS
and DFFS using the first 10 features, respectively.

Next, we train the classifiers with the Banca training set.
As expected, when we use the same database for testing both
classifiers perform well. However, SVDD finds good de-
scriptions using less features than DIFS. Figures 3-a and 3-b
show the ROC curve for DIFS using 100 features (the best re-
sult obtained for DIFS), and a very similar ROC for SVDDs
using only 50 features. In this case the target class is more
complex and we need more features than in the previous ex-
periment to reach the same performance.

Finally, we test the classifiers with images from different
databases. The ROC curves for DIFS trained with 100 fea-
tures, and for SVDD trained with 50 features are presented
in Figures 3-c and 3-d. SVDD performs better, using only
half the features.

We have also studied the influence of the feature space
dimensionality in the performance of the SVDD. We have
trained several SVDDs keeping s constant and varying the
number of eigenfaces, and we have found that at a certain
point, increasing the number of eigenvectors does not im-
prove much the results (M ' 30 and M ' 70 for XM2VTS
and Banca training sets, respectively). In high dimensions,
most of the points become support vectors (for any value of
s), and this suggests that more data is required. In those cases
we need more training points to find a reliable description of
the boundary.

5. CONCLUSIONS

In this paper, we have focused on the use of the Support Vec-
tor Data Description classifiers based on PCA features for
face detection and have compared SVDDs with classifiers
based on DIFS.

SVDD finds a more flexible boundary description than
DIFS. Our experiments have shown that when the training
data is a representative sample of the target distribution or
when the training data does not model its distribution but
covers the target class area, SVDD outperforms DIFS.

We have obtained good results for relatively low dimen-
sions of the feature space. In high dimensions, more training
data is required to find a reliable boundary estimation.

Based on these results we are replacing the DIFS classi-
fier by a SVDD classifier as the texture-based classifier in-
cluded in our face detector.
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