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ABSTRACT

In this communication, the problem of blind deconvolution
of transient, impulsive signals in a multichannel environment
is addressed. This kind of signals arise naturally, or are used
as external excitation, in many mechanical and acoustical
systems and can only be observed indirectly, after propaga-
tion through the medium. Blind deconvolution or identifica-
tion methods published to date are not suitable for recovering
these sources or the system response, as identifiability con-
ditions are not met. We fully develop here a deterministic
subspace method for the blind deconvolution in a multichan-
nel environment which does not impose any restrictions on
the excitation signals or on the impulse response of propaga-
tion channels, apart from finite length and channel diversity.
The method is also extended to cope with signals in noisy
environments.

1. INTRODUCTION

In recent years there has been a growing interest in the blind
identification / deconvolution problem, aiming at compensat-
ing the linear distortion introduced by a system, which usu-
ally models the effects of propagation through the medium
and signal acquisition distortion. The deconvolution process
directly equalizes the signal, whereas in the case of identifi-
cation, the system response is first estimated.

Being a classical problem, current research efforts in this
area are mainly motivated by the explosive growth experi-
enced in the field of wireless communications, and the ne-
cessity to compensate the distortion effects inherent to ra-
dio signal propagation. As a result, most blind deconvo-
lution/identification methods published to date have been
developed having typical digital communication signals in
mind, exploiting their repetitive characteristics in order to
estimate either the transmitted signal or the response of the
system.

In many applications, recovering an impact signal in
a mechanical system (or the system response) is of great
importance. These applications include signature analysis,
coin-tap tests, seismic exploration and modal analysis, just
to name a few. Usually, we do not have access to a previ-
ous estimation of the source or the system response in order
to apply classical identification or deconvolution approaches,
so blind estimation techniques are mandatory.

In [1], Tong and Perreau review and classify multichan-
nel blind identification methods. In a whole, these methods
fall into one of two broad categories: Statistical methods -
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which take some statistical properties of the input for granted
- and deterministic methods - which do not use this infor-
mation, even though signals involved may be random. This
classification can also be applied to the dual problem of blind
deconvolution. Statistical methods are not suitable for non-
repetitive, impulsive excitation signals, as they do not show
stationarity and hence no relevant statistical information can
be obtained by means of sample averages. This characteristic
also impairs the aplicability of deterministic subspace meth-
ods which rely on second-order statistics to recover signal
and noise subspaces [2]. This work is based on other deter-
ministic subspace techniques [3] and avoids the troublesome
estimation of the length of the different channels, required by
these methods.

This paper is organized as follows. In the next section
the data model and the notation employed throughout this
work is introduced. The propposed deconvolution algorithm
is disclosed in section 3, starting from matrix theory and lin-
ear prediction principles. All statements upon which the de-
convolution algorithm is built are given without proofs. A
more thorough development with formal demonstrations can
be found in [4]. Section 4 is devoted to results from synthetic
and real signals.

2. DATA MODEL

This work deals with the outputs of a system composed of
several (Q) linear, time-invariant (LTT) channels, all of them
excited by a single input. This is known as a single-input,
multi-output (SIMO) system. LTI systems are common and
mathematically tractable models for the effects of propaga-
tion and acquisition of signals. The well-known convolution
sum (1) relates the input and output of such systems. For
the time being, we will ignore the effects of noise in the out-
put signals. We will assume that the length of the input sig-
nal (P+ 1) and the length of the impulse response (L + 1)
are finite, and hence, so is the length of the output signal
M+1=P+L+1).

P
xqn] = bln]xhg[n] =Y b[k] - hy[n— K] 0
k=0
q = 1 )t Q
We may express the convolution in matrix form (2):
x4[0] blo] 0 0 0 hg[0]
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: = |bl2] B[] b[O] U
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X4 € RM+Dx1 s a vector whose elements are samples
of the g-th channel output signal, B € RM+Dx(L+1) jg 5
Toeplitz matrix made up with samples of the input signal
and h, € READ*1 s a column vector whose elements are
samples of the g-th channel impulse response.

Lower-case, bold-face letters, such as x, denote column
vectors, whereas capital, bold-face letters, such as B, denote
matrices. T stands for the matrix transpose operation. x(z) is
a polynomial whose coeficients are taken from the elements
of x: x(z) = x[0] +x[1]z+--- +x[M] M.

[Aj } and <Aj > denote respectively the set of columns of
matrix A and the subspace spanned by those columns.

3. MULTICHANNEL BLIND DECONVOLUTION
3.1 Subspace approach

In [3, Lemma 2] it is shown that the standard form of the null
space of a rank deficient Hankel matrix possess the structure
of matrix B in (2). Consequently, we may take the columns
of B as the null space of some Hankel matrix S(M + 1) gen-
erated by a sequence s[n] as in (3). Moreover, the rank of this
Hankel matrix is shown in [3] to be P.

S I I
S(r)= : : . 3)
SIN—r+1] sIN—r+2] - 5[N]

It is a well-known result from Linear Prediction theory
that the maximum rank of the Hankel matrices generated by
a sequence composed of a finite number P of modes is equal
to P. A mode m;[n] is a sequence defined as

m;[n] = ¢;z! n=0,....N
for some amplitude factor ¢; and root z; (possibly complex).

It can be shown that the roots of those modes are the roots
of the polynomial b(z) which appears in the standard form of
the null space of the rank deficient Hankel matrices. In fact,
the linear prediction polynomial of sequence {s[n]} is:

AR)=1+ar-z ' +...+ap-z "

with a; = %,izo,...,ﬁ
Vectors x, are linear combinations of the columns of B,

so they also lie in the null space of S(M+1):

S(r)-x4=0 q=1,...,0 “)

The Hankel structure of S(M+1) allow us to rewrite
equation (4) as follows:

X,-s=0 qg=1,....0
where X, € RMHDXN jg o Toeplitz matrix as defined in (5)
ands =[s[0] s[l] s[M])".
xg[0]  xg[1] xq[M] 0 0
xq[0] xgM—1]  xq[M] 0
Xy= : :
0 0 0] xll] (M)
(5)

Piling up all matrices X, for ¢ = 1,...,0 we get a
block Toeplitz matrix Xgs = [XIT x7 Xg]T S
REM+DXN  This matrix is know as Generalized Sylvester

Resultant and was studied in [5] in order to obtain the great-
est common divisors of matrix polynomials.

Xgs-s=0 (6)

The results of [5] state that the dimension of the null
space of Xgs is equal to the number of roots common to
all polynomials x;(z), i = 1,..., Q. Imposing the condition of
channel diversity, that is, that no zero is shared by all chan-
nels, the only roots common to all x;(z), i = 1,...,Q, are the
P zeros of the input sequence.

Since all sequences with A(z) as their linear prediction
polynomial lie in a P-dimensional subspace and they satisfy
equation (6), the null space of Xy is exactly that subspace.

3.2 Krylov subspace estimation

s[n] was defined as a sequence with linear prediction poly-
nomial A(z). The objective of the method developed below
is to find A(z), which will yield a scaled copy of the source
signal b[n|. Equation (6) is equivalent to the following set of
equations:

XT -Sp = 0

XT -C- Sp = 0

XT . CN—M+1 s0=0

where sg € RM+Dx1 js determined by P initial values and
linear prediction polynomial A(z), X =[x; %X -+ Xg]
€ RM+1)xQ and C € RM+D*M+1) i5 defined as follows:
0 1
0
1
C= 0 7
1
0 1
0 0 - —ap - —ar —a

In order to estimate b[n|, the unique Krylov subspace
Ky_m+1(C,80) = (s0,C"sp,...,C"M.50) orthogonal to
the range of X must be identified. It’s trivial to prove that
when s is generated by the linear prediction polynomial
that appears in C, the dimension of Ky_p+1(C,sp) is P,
so Ky_m11(C,s0) = Kp(C,sp).

Let Cr be the matrix formed with the last P columns
of CM~=F_ 1t is easy to show that [Cr/], j=1,...,P, is a
base for Kp(C,sp) and that its top P rows are taken from a
P x P identity matrix. The coefficients of linear prediction
polynomial A(z) appear in its (P + 1)th row.

Let G be an orthogonal matrix whose columns form a
basis for the orthogonal complement of the range of X. Let
Gp denote the top P rows of (=, with singular value decom-
position Gp = U-X- VT Define matrix Gp ™ as

Gp'=V.T.UT,

with T = [V'if} of the same size as 37 .

D is a diagonal matrix whose non-zero elements are the
inverse of the singular values of Gp. For any matrix W of



appropiate size, F = G - Gp™ is a matrix whose top P x P
submatrix is the identity (if we make W = 0, GIf is the
Moore-Penrose pseudoinverse of Gp). Choosing W con-
veniently will give F equal to Cr.

It can be shown that, for [F/], j=1,...,P, to be abase of

Kp(C,sp), [(C~F)j], j=1,...,P, must be a base of <F/>

j=1,...,P. Thatis, C-F =F-R with R a full-rank P x P
matrix. The values of the elements of R can be inferred from
the special structure of F:

0 1
0 1
R= (®)
0 1
—ap —ap_y -+ —ay —a

In absense of noise, there must exist a unique matrix W
that makes C - F equal to F - R. C and R are built following
(7) and (8), whith the elements of their last rows taken from
the (P+1)th row of F. As a result, we obtain a quadratic
function of the elements of W which must be zeroed:

C-F-F-R=0 )

Having found matrix Wq with (9), the deconvolved source
signal results from the coefficients of the linear prediction
polinomial A(z), which form the (P + 1)th row of F:

b =[Gy Go™ 1],

where G p,1) stands for the (P + 1)th row of G.

In the presence of noise, equation (9) will not be satisfied
for any matrix W. In this case, the square of the Frobenius
norm of the residual (C - F — F - R) can be minimized to find
matrix Wo:

Wy =arg n&n (|C‘F7F~R|%m)

4. EXPERIMENTAL RESULTS
4.1 Synthetic signals

The algorithm resulting from the method described has been
first applied to synthetic signals, obtained through the con-
volution of a single source with three arbitrary impulse re-
sponse functions. Two different source signals were designed
to drive the multichannel system. One of them takes the
shape of half a period of a sinusoidal function, which is the
shape expected for the acceleration caused by an elastic col-
lision (test 1). The other one was conceived to show more
abrupt changes in its shape (test 2). Gaussian, white noise
was added to the synthetized signals, resulting in a maximum
signal energy peak to noise power ratio of 93.85 dB.

The algorithm proposed in this work for multichannel
blind deconvolution (MCBD) was applied to both test prob-
lems, as well as two other blind deconvolution / identification
methods: Least-Squares Blind Channel Identification (LS-
BCI) [3], and Two-Step Maximum Likelihood Identification
(TSML) [6].

Methods LSBCI and TSML require previous knowledge
(or estimation) of impulse response lengths. In the case of
MCBD, source length can be estimated by running the algo-
rithm for several lengths and detecting an abrupt change in
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Figure 1: (a, b) Minimum of cost function attained for dif-
ferent lengths of estimated signal for test problem 1 and test
problem 2, respectively.
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Figure 2: (a) Output signals of test problem 1 simulated
multichannel system. (b, c, d) Original (dashed) and esti-
mated (solid) source signals obtained with MCBD, LSBCI
and TSML, respectively.
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Figure 3: (a) Output signals of test problem 2 simulated
multichannel system. (b, ¢, d) Original (dashed) and esti-
mated (solid) source signals obtained with MCBD, LSBCI
and TSML, respectively.

the minimun of the objective function. Figure 1 shows a plot
of the minimum obtained for different lenghts in test prob-
lem 1 and test problem 2. Sources of 27 and 28 samples are
estimated in test problems 1 and 2, respectively.



LSBCI
-28.26
-10.14

TSML MCBD
-41.10  -45.00
-20.57  -22.69

Test 1
Test 2

Table 1: Estimation error energy to signal energy ratio (dB)
for LSBCI, TSML and MCBD.

Figures 2 and 3 show the output signals of the three chan-
nels (a) and the real and estimated source signals obtained
with MCBD (b), LSBCI (c) and TSML (d) for test problem
1 and test problem 2 respectively. The estimated source sig-
nals are conveniently scaled to match the original, as ampli-
tude information cannot be recovered by blind deconvolution
techniques.

Table 1 shows the estimation error energy to signal en-
ergy ratio obtained with the three algorithms. The proposed
algorithm MCBD provides a more accurate estimation for
both test problems.

4.2 Real signals

The experimental set-up for the acquisition of real signals
consists on a metallic beam hit by a sensorized hammer. The
acceleration caused by the impact excites some modes of
propagation and is finally detected by three capacitive ac-
celerometers placed upon that beam in different positions.
These sensors provide the output of the multichannel sys-
tem. The acceloremeter in the head of the hammer gives us
a direct measure of the excitation signal. Figure 4 shows the
impact signal and a detail of one of the output signals.

The signals are sampled at 400 samples/second by the
acquisition device, which is enough to observe the first two
modes of propagation. The infinite length of the signals vio-
lates one of the assumptions made in the development of this
work. In order to apply the proposed algorithm, the common
poles of the signals are first estimated following the method
in [7] and their contribution is filtered out. The result are
finite-length signals modeling the zeros of the original ones
(figure 5: a, b, ¢).

Figure 5 (d) shows the impact signal provided by the sen-
sor placed inside the hammer and the estimated one, provided
by the proposed method (after scaling). The result provided
by the algorithm can be considered satisfactory, in the sense
it approximates the shape of the excitation signal and allows
and estimation of its duration.

5. CONCLUSIONS

This work has introduced a novel blind deconvolution algo-
rithm suitable for recovering transient, impulse-like signals.
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Figure 4: (a) Impact signal provided by the sensorized ham-
mer. (b) Detail of one output signal.
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Figure 5: (a, b, ¢) Output signals after removing poles contri-
bution. (d) Measured (dashed) and estimated (solid) source
signal.

This kind of signals appear in many mechanical and acous-
tical systems and do not fulfill the identifiability conditions
of published blind methods. The only conditions imposed
by the proposed algorithm are the finite length of signals
involved and channel diversity, which is essential to assure
uniqueness of solution for any multichannel deconvolution /
identification method.

Moreover, the length of the source signal can be found
running the algorithm for several length values, whereas
other blind methods require previous knowledge or estima-
tion of impulse response lengths.
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