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ABSTRACT

In this paper an approach for integration between GPS and inertial
navigation systems (INS) is described. The continuous-time nav-
igation and error equations for an earth-centered earth-fixed INS
system are presented. Using zero order hold sampling, the set of
equations is discretized. An extended Kalman filter for closed loop
integration between the GPS and INS is derived. The filter propa-
gates and estimates the error states, which are fed back to the INS
for correction of the internal navigation states. The integration al-
gorithm is implemented on a host PC, which receives the GPS and
inertial measurements via the serial port from a tailor made hard-
ware platform, which is briefly discussed. Using a battery operated
PC the system is fully mobile and suitable for real-time vehicle nav-
igation. Simulation results of the system are presented.

1. INTRODUCTION

Today many vehicles are equipped with global positioning system
(GPS) receivers that constantly can provide the driver with infor-
mation about the vehicles position with an accuracy in the order of
15-100 meters [1]. However, the GPS receiver has two major weak-
nesses. The slow update rate, only once a second for most receivers
and the sensitivity to blocking of the satellite signals. An inertial
navigation system (INS) is an alternative tool for positioning and
navigation. A classical reference on low-cost INS for mobile robot
applications is [2]. In the opposite of the GPS receiver an INS is
self contained and can provide position, velocity and attitude esti-
mates at a high rate, typically 100 times per second [3]. However,
due to the integrative nature of the INS, low frequency noise and
sensor biases are amplified. The unaided INS may therefore have
unbounded position and velocity errors [2]. These complementary
properties make an integration of the two systems suitable, which is
the topic of this paper.

The primary motivation for the reported work is the in-house
need for a GPS aided INS test-bed for education and research in
the area of vehicle navigation and performance analysis. A goal
is to develop a hardware platform and additional software, which
together with a standard host-computer will work as a basic GPS
aided INS. From the software skeleton the student/researcher can
then build an application meeting their demands. Related work do
exist, for example in [4] a field evaluation of a low-cost GPS aided
INS installed in a car is presented. In [4], the strap-down INS is in-
tegrated with two different GPS solutions (pseudo range and carrier
phase differential GPS, respectively) using a Kalman filter.

In this paper a loosely coupled position aided method is pro-
posed which allows the designer to keep the costs low by using an
off-the-shelf GPS receiver that provides position estimates employ-
ing NMEA (National Marine Electronics Association) data trans-
mission protocol and sentence format. In Section 2, the INS equa-
tions and the corresponding error models are introduced. Next the
navigation dynamics are discretized in Section 3. Section 4 presents
an indirect extended Kalman filter (EKF) for the integration be-
tween the GPS and INS data. The INS provides the reference tra-
jectory and output. The EKF then estimates the errors, which are
fed back to the INS for correction of its internal states, resulting
in a closed loop integration, see Figure 1. Implementation aspects,
simulations results and conclusions are presented in Section 5.
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Figure 1: Loosely coupled position aided closed loop implementa-
tion of a GPS aided INS system. KF denotes the extended Kalman
filter, and H the map between navigation output and GPS data.

2. NAVIGATION DYNAMICS

A strap-down INS comprises two distinguished parts. The iner-
tial measurement unit (IMU) housing the accelerometers and gyros.
The computational part, consisting of several differential equations,
translates the measurements into position, velocity and attitude es-
timates. The calculations are performed in two steps. From the
gyro measurements the directional cosine matrix relating the body
coordinate frame to the used navigation frame is propagated. The
coordinate rotation matrix is then used when solving the differential
equations relating accelerations in the body frame to the navigation
coordinate system. An earth-centered earth-fixed (ECEF) naviga-
tion coordinate system implementation of the INS has the advan-
tage of producing positions estimate in the same coordinate system
as used by the GPS system, which simplifies the integration between
the two systems [1].

2.1 Navigation equations

The continuous-time navigation equations in the ECEF frame
are [6]
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where r¢ and v¢ denote the position and velocity in 3-dimensional
ECEF coordinates, respectively. The superscripts e, b and i (that
will be used below) are used to denote in which coordinate frame
a variable is resolved in, that is the ECEF, body or inertial frame.
Further, f? is the measured acceleration in the body-frame, g° is
the position dependent, but known earth acceleration in ECEF co-
ordinates, that may be compensated for. The rotation matrix, R
transforms a vector in the body frame to the ECEF frame. Althoug

R has nine elements, it has only three degrees of freedom and can
be uniquely described by the three Euler angles, in the sequel gath-
ered in the vector [5]. The matrices ng and Q, are the skew-
symmetric matrix representations of the angular rates :b and ¢
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where the elements <?be’ é’bu and gb_. are the angular rates of the

body (vehicle) frame relative to the ECEF frame, resolved in the
body navigation frame. The matrix, 2{, has the structure of (2)

with the components of ebb replaced by the corresponding com-

ponents of the earth rotational rate . Since variations in the
earth rotational rate  {, are neglectable, €2, is assumed constant
and known, while st depends on the body to ECEF angular rates,
b=[25 b b ]*andthus is time-varying. Here (-)* denotes

X y z
the transpose operation. The body to ECEF angular rates are ob-
tained by subtracting the angular rate of the earth, resolved in body

. b .
coordinates from the gyro outputs ;, that is
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where the rotation matrix from the ECEF to body coordinates is
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The last equality is a result of the fact that the directional cosine
matrix is an orthonormal matrix (that is, Rj R§* = I).

With reference to Figure 1, the INS inputs are the 3-dimensional
measured acceleration in the body frame f? and the 3-dimensional

angular rates of the body frame with respect to the inertial frame

of reference ibb. Further the navigation outputs of Figure 1 are the

position, velocity and Euler angles of (1).

2.2 Error equations

Even though the inertial instruments have been calibrated the mea-
sured IMU signals will be erroneous, due to environmental varia-
tions and instrument degradation. As a result, there are biases in
the position and velocity estimates as well as a misalignment be-
tween the estimated and true coordinate rotation matrices. The IMU
measurement errors can be modelled as a random level, and white
Gaussian noise [6], describing the bias and the measurement noise,
respectively. Here the IMU sensors are assumed to be the only noise
sources in the system. Hence, the noise enters the system equations
only through the attitude and velocity state, that is the two last equa-
tions in (1). Defining the error state vector x(¢) and the measure-
ment noise vector u.() as
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uc(t) = [ chc(t) uzryro (t) ]* (6)
where r¢ denotes the error in position, et cetera. The vector
is the small angle rotations aligning the actual navigation frame to
the computed one. Further, u,.(¢) denotes the accelerometer noise
and ugy,, () the gyro noise, respectively. Then, if neglecting gravity
errors, the navigation error equations can be written as [6]
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The error equations (7) are time-varying, since Rj depends on the
attitude and F¢ (as defined below) on the acceleration of the vehicle.
In (8), I3 (03) denotes the unity (zero) matrix of order 3 and F° is
the skew symmetric matrix, defined as
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where f7 denotes the acceleration along the /:th coordinate axis in
the ECEF frame.

The constructed IMU platform houses three separate ac-
celerometers and gyros, therefore the sensor noises are assumed un-
correlated [9]. However, the accelerometers respectively gyros are
of the same model and thus assumed to have similar noise character-
istics. Let ;.. and éym denote the variance of the accelerometer
and the gyro noise, respectively. Then the covariance matrix, Q. (7)
of the Gaussian measurement noise u.(¢) in (6) is given by

2
E{u(r+ )ui())=| B 0
03 gyro

A
L | OF@0) ay

where () is the Kronecker delta.

3. DISCRETIZATION

The implementation of a GPS aided INS system requires that the
navigation and error equations are discretized. First the navigation
equations are discretized, where special care is taken to preserve the
properties of the rotation matrix. Next the zero-order-hold sampling
of the error equation is described.

3.1 Discrete time navigation equations

Zero-order sampling of the position and velocity equations in (1)
results in

rig =rp+ v (12)
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When discretizing the attitude equation in (1) care must be taken
so that the orthogonality constraints of the directional cosine matrix
are maintained. Let 7y denote the sampling interval and assume
that Q[e’b is constant. Then the matrix taking the solution of the
attitude differential equation from time instant k7 to (k+ 1) 7 is
exp(ﬂle’b T;). Hence, the attitude equations can be approximated by

RS, =Rj, exp(Q,T,) (14)

By expanding the matrix exponential into an (n,n) Padé approxi-
mation the orthogonality constraints of the rotation matrix are pre-
served [1]. Using a (2,2) Padé approximation the discrete attitude
equation becomes

Ry, =R§, QL+ Q5 L)L -5, 7)™ (15)

3.2 Discrete time error equations

Having a continuous-time equation as in (7) with a known solution
at time £y, the solution at a time ¢ > ¢y can be represented as [7, 8].

x() = ®(t10) x(0)+ [2(0)GOu ) (16)

where the state transition matrix ®(¢,7) is defined as the unique
solutionto ®(z, )/ t=F(¢r)D(¢, ). If the state transition matrix
F(¢) in (8) is assumed time invariant, the homogenous differential
equation has the solution of the matrix exponential function, that
is ®(t, ) =exp(F-(t—1t9)) [8]. In the case of F(¢) being time
varying, F'(z) can be approximated as a constant matrix F between
the sampling instants, if the sample rate is high compared to the rate



of change in F'(¢). Using the power series definition of the matrix
exponential, the state transition matrix between time instants k7
and (k+ 1)7; can be approximated as

S ((k+1)T5,kTy) = 1is + F(KT) Ty (17)
Hence, the discrete-time error equation becomes

X1 = P Xptugg (18)

where the state transition matrix ¥ = ®((k+ 1)7T;, kTy) is approx-
imated as in (17) and the discrete-time process noise, uy is
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Since uy  is a linear combination of Gaussian noise, it is Gaussian
distributed and described by its first and second order moments. The
mean of u, 4 is zero, since u(z) is assumed zero mean. Applying
the definition of covariance and assuming 7y small, the covariance
of the discrete-time noise Qg ; can be approximated as [1]
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where diag(-) denotes a block diagonal matrix. The last equality is
a result of the orthonormality property of the rotation matrix Ry,
and that Q. (¢) is a diagonal matrix according to (11).

The definition of the state observation equation is straightfor-
ward since the GPS position estimate is used, and not the pseudo
ranges. Let y be the difference between the GPS and INS position
estimate and w  the error in the GPS position estimates. Then the
observation equation can be written as

Yi=Hp xp+wg (21)
with the state observation matrix Hj, of size 3 x 15, defined as
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where ¢ denotes the ratio between the INS and GPS sampling fre-
quency.

4. EXTENDED KALMAN FILTERING

The discrete non-linear navigation equations (12), (13) and (15) can
be written as

Zi1 = c(zg, ag) + Uy (23)

where ¢(-,-) denotes the dynamics, z;, is the navigation system out-
puts: position, velocity and Euler angles defining the rotation matrix
R, that is the 9-element vector
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Further, the navigation system input is the 6-element vector ay
which contains the inputs to navigation system, accelerations and
angular rates, that is

ay = { £ by r (25)

The vector ujc is the measurement noise of the navigation inputs.
Linearization of the navigation equations (23) are first done around
a known nominal trajectory, resulting in a linear model for the per-
turbations away from the true trajectory. To the linear error equa-
tions the standard Kalman filter is applied. Then substituting the
nominal trajectory with that of the INS estimated trajectory results
in an extended Kalman filter. Consider the true state vector z; and
the measured input &, to the system written as

zr=2z"" 4+ 2z (26)
a; = aZOm + ay (27)

where z;°"" and aj®" are the nominal trajectory and input, respec-

tively. The quantity zj is the perturbation away from the true tra-
jectory and ay the bias of the measurements. Assuming that zj
and ay are small and applying a first order Taylor series expansion
of ¢(z,a), equation (23) can be approximated as

2+ zZ = (g, al?) + Crx oz +Coy ak+u;€ (28)
where
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The Jacobians of ¢(z,a) are updated with nominal trajectory and
input for each sample. Choosing z}°" and a}°” to fulfill the deter-
ministic difference equation

2 = (" 2" (30)

and substituting (30) into (28) results in a linear model for the error
z, that is

21 =Cry zp+Coy ap+up (€20)

Notethat x;=| z; aj |",and thus it becomes clear that C 4
and C, 4 correspond to the upper part of the navigation error state
transition matrix ¥. The lower 6 x 6 block matrix of ¥ is a de-
scription of how the IMU biases a; develop with time. Since this
is a linear model the standard Kalman filter equations can be applied
to estimate X [8]. The Kalman filter equations read
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Here a; denotes the estimated biases in the measurements, et
cetera. Variables with a minus sign, (-)~ are predicted values, and
those with superscript nom the one obtained from (30). The matrix
Ry 1 is the covariance matrix of the error w4 in the GPS position
estimates y;. Now adding z;°™ to both sides of equation (32) and
substituting z;" with the current estimate in all equations result in
an extended Kalman filter, where the time and filter update for the
estimates are given below

2y, = c(2r,4y) (37

&, = [ili01s,1005 (38)
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The solution to (37) is provided by the INS, since this corresponds
to the navigation equations. The vector &y is the estimate of the
true IMU-signal obtained by subtracting the estimated bias from
the measured IMU signal. The only obstacle is the time update of
navigation state errors Zj. If the estimated navigation error states
are fed back to the INS for correction of the INS internal states, the
corresponding error states can be set to zero [5]. Hence, 2, =
09 1. The final algorithm for the integration is given in Table 1.
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No GPS data available. (k # 100,200,...)
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GPS data available. (k= 100,200,...)
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Table 1: The algorithm for integration between GPS and INS data,
with a ratio between the sample rates equal to 100 times.

PSfrag replacements

5. DESIGN AND CONCLUSIONS

Discrete navigation equations for a direct ECEF INS implementa-
tion and the corresponding error model have been derived. Fur-
ther, an indirect extended Kalman filter algorithm for integration
between the position estimates from an off-the-shelf GPS receiver
and the INS has been presented.

5.1 Hardware Design

A GPS aided INS platform has been developed in-house, consist-
ing of an off-the-shelf GPS receiver and an in-house IMU platform.
The IMU platform comprises state-of-the-art MEMS gyros and ac-
celerometers, and a micro-controller to control the data acquisition.
The micro-controller controls the GPS-receiver via an RS232 serial
interface. The GPS and INS data are synchronized and sent over a
second RS232 serial interface to the host PC, see Figure 2. Using
a battery operated PC the system is fully mobile and able to per-
form real-time signal processing [9]. However, at current state pro-
cedures for calculating the different calibration parameters are yet
to be implemented and therefor no field tests are available. Below
follows a short evaluation of the system for simulated IMU data,
corresponding to a typical driving scenario.

5.2 Simulation results

The superiority of the GPS aided system over traditional GPS is
illustrated in Figure 3. In Figure 3 the dashed trajectory is the posi-
tion estimates generated by simulated data as input to the GPS aided
INS system. The shown specks are the GPS position and the solid
line is the true trajectory. A ratio of 100 times was used between
the INS and GPS sample ratio and the GPS position estimates had
a standard deviation of ten meters. The biases of the accelerom-
eters and gyros were in the order of 1-2 ¢m/s* respectively 5-10
°/h. Not surprisingly, the GPS aided system clearly outperforms the
GPS-system.

Our current work is focused on studying and implementing dif-
ferent sensor error models and calibration methods, making the test-
bed available for field tests. More detailed performance evaluations
and results from field tests will be reported elsewhere.
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Figure 2: Block diagram of the hardware.
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Figure 3: Estimated and true trajectory of a typical driving se-
quence. First the car is stationary for 100 seconds. Then it makes a
wide turn and accelerates to 18 km/h, which it keeps until after the
last turn. Finally the car slows down and stops. Worth observing is
that the accelerometer biases estimates have converged already be-
fore the car starts moving, while the gyro biases have not converged
until after the last turn.
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