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ABSTRACT

In this paper, a novel bottom-up visual attention model is
proposed. By using static and dynamic features, we deter-
mine salient areas in video scenes. The model is character-
ized by the fusion of spatial information and moving object
detection. The static model, inspired by the human system, is
achieved by a retinal filtering followed by a cortical decom-
position. The dynamic model is carried out by an estimation
and a compensation of camera motion. Although several ap-
proaches to visual attention were developed in various appli-
cations, few compared their model to human perception. A
psychophysical experiment is then presented to compare our
model with human perception and to validate it. The results
provide a quantitative analysis and show the efficiency of this
approach.

1. INTRODUCTION

Visual attention has become an important feature in image
analysis processing. It aims at reducing the quantity of data
and considering only relevant information. Indeed, atten-
tion represents the capacity of humans to focus on a visual
object by watching a scene. Attention shifts our gaze ac-
cording to two kinds of processing: task dependent process-
ing (top-down) and primitive selective attention processing
(bottom-up). In this last case, the saliency is determined un-
consciously by the visual system. It is obtained from ba-
sic information of input image (intensity, orientation...) and
driven by the attributes of stimuli in a scene.

Despite recent advances in video content analysis and
event detection, understanding of videos is still far from be-
ing achieved. To try to bridge the semantic gap between
low-level visual features and high-level concepts, attention
is used to facilitate understanding of videos and thus their
indexing. Attention model allows regions of interest to be
selected in scenes and reduces the number of locations to be
analyzed. Saliency maps have been studied in computer vi-
sion. The first models relied on spatial information. From
different low-level features (orientation, intensity and color),
models were defined combining them as for example in [1].
Other approaches created more elaborated models. Chau-
vin et al. [2] proposed a model inspired by the retina and
the primary visual cortex cell functionalities. Then, attention
was introduced into video analysis. The methods exploited
the temporal component and were based on a motion esti-
mation [3]. New systems appeared by combining maps of
static and dynamic visual attention [4, 5]. In [6], the authors
proposed an attention model based on visual static features
but also on face and text detection. In general, these com-
putational models are not inspired by functionalities of hu-

man visual system cells and the saliency maps obtained are
not compared to human perception. These maps are directly
used through various applications like video summarization,
encoding, watermarking or surveillance.

In this paper, we propose a new framework to model
bottom-up visual attention. It relies on the fusion of a static
model inspired by the human system and a model of mov-
ing object detection in a scene. The static model is based
on retinal filtering followed by a bank of Gabor filters. The
moving object detection is carried out by compensation of
camera motion. Once the visual spatio-temporal attention
model was built, a psychophysical experiment allowed us to
validate the proposed model. The main contributions of our
work are a new user attention model and the building of an
experiment to judge the effectiveness of the method.

2. ATTENTION MODEL

In this section, we describe our attention model. This model
extracts the salient areas from videos. It is divided into two
parts: a static and a dynamic one. The model architecture is
depicted in figure 1.

retina filter

Gabor
filter

Interaction

Affine motion
 estimation

Motion
compensation

Frame 
Difference

Static
 saliency

map

Dynamic
saliency

map

temporal
filter

temporal
filter

Normalization Normalization

Fusion
(max +

threshold)

Attention
masks

tframes

Static Dynamic

Figure 1: Principle of the spatio-temporal attention model



2.1 Static part of the model

This part is inspired by biology and functionalities of hu-
man visual system cells (from the retina to the primary visual
cortex). This part of the model concerns each frame of the
videos.

Retinal filtering
At the first level of information processing, the retinal pho-
toreceptors carry out an adaptive compression process fol-
lowed by high-pass filtering [7]. This results in contrast
equalization of the image, providing a relative insensitivity
to local illumination variations. This pre-processing is inter-
esting for extracting saliency because it is invariable to some
modifications, such as luminance variations between images.
Then, the parvocellular pathway provides a spatial high-pass
filter (known to whiten an image’s frequency spectrum) that
compensates for the 1/f image amplitude spectrum.

Primary visual cortex
Primary visual cortex cells are sensitive to visual signal ori-
entations and spatial frequencies. Here, we chose to model
simple cell receptive fields. These cells are sensitive to stim-
uli having a certain orientation and a certain frequency with
a specific position in the visual field, which is modelled by
a two-dimensional Gabor filter. A Gabor function is defined
by a gaussian with spatial extents σx and σy modulated by a
complex exponential with frequency f in a direction θ . We
chose 4 frequency bands f0 = [0.0375, 0.075, 0.15, 0.3] and
8 orientations θi = iπ
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We carried out this filtering by directly multiplying the
retina output image with the Gabor filter in the Fourier do-
main. Before achieving the Fourier transform, we multiplied
the image by a Hanning window to remove edge effects.
We chose here to decompose each image of the video us-
ing thirty-two Gabor filters (four different spatial frequencies
and eight different orientations). So, we obtained thirty-two
maps (thirty-two images), depending on the frequency and
the orientation of the original image, for each frame of the
video.

Interactions
A neuron is, by definition, a contact cell. Thus, the response
of a cell is always dependant on a neuronal environment.
Then, the neuron’s activity is modeled by the visual field
neighborhood and so is dependent on lateral connections.
With regard to the orientations, the computed interactions
preferentially connect neurons devoted to the same orienta-
tion. These interactions, which symbolize both excitatory
and inhibitory connections, are modeled by a linear combi-
nation of the simple cells (fig 2):

Eint( fi,θ j) = å
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Figure 2 illustrates the interactions. In this example, the Ga-
bor filter with weight 1 in direction π/4 interacts with its
neighbours. The Gabor filters with the same direction sym-
bolize excitatory and those with different directions represent
inhibitory.
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Figure 2: Example of interactions. The Gabor filter with
weight 1 in direction π/4 interacts with its neighbours.

The output of this stage is composed of 32 maps for each
image of a video. These maps put into relief the image en-
ergy in function of the spatial frequency and the orientation
of the signal in the original image and take into account the
interaction between the orientation maps.

Static saliency map
We extract a static saliency map for each image as the sum
of the 32 energy maps described above:

E f =

∣∣∣∣∣åi, j
Eint( fi,θ j)

∣∣∣∣∣ (3)

The regions having the highest energy are considered to be
salient. Figure 3 shows examples of static saliency maps.
The content of the images is rather varied: a boat and surfers
close to a beach, a rugby match, a person in a hall. We can
observe on the bottom row that the energy is located on ob-
jects which seem to be salient.

Figure 3: Examples of static attention maps. Top row: video
frame. Bottom row: the associated static attention map.

2.2 Dynamic part of the model

The dynamic part of the model detects the moving objects in
a scene. In fact, we assume that the location where some-
thing moves is salient. Next, it is necessary to estimate cam-
era motion. We use the 2D motion estimation algorithm de-
veloped in [8]. This algorithm provides the dominant motion



between two successive frames. A 2D parametric motion
model between two successive frames is then defined and a
robust multiresolution estimation of parametric motion mod-
els is carried out. We chose affine motion model to represent
the camera motion.{

vx = a1 +a2 · x+a3 · y
vy = a4 +a5 · x+a6 · y (4)

Once we had the coefficients [a1, ...,a6], we computed the
motion compensated frame. Compensation of camera mo-
tion was formed by bilinear interpolation Ic(x,y, t + 1) =
I(x + vx,y + vy, t + 1). The previous frame was then sub-
tracted from the motion compensated frame to generate Dis-
placed Frame Difference (DFD):

DFD(x,y, t) = Ic(x,y, t +1)− I(x,y, t) (5)

Finally, the absolute value of DFD informs about regions that
do not follow camera model and corresponds to displacement
of objects. Figure 4 shows examples of object detection. We
can see that the surfers are correctly detected as well as the
rugby players, and the person in hall.

Figure 4: Examples of moving object detection. Images rep-
resent the absolute value of Displaced Frame Difference.

2.3 Spatio-temporal attention model

Before dealing with map fusion, it is necessary to carry out
a temporal filtering of each map. Indeed, the maps are com-
puted locally, either on one frame (for the static model) or on
two successive frames (for dynamic model), and the salient
regions must be temporally coherent inside a window of du-
ration L. The temporal continuity of the video prevents the
appearance of salient areas on one or two images only (two
frames correspond to 2/25 = 0.08s). This is why a median
filtering of width L is carried out. In our experiment, the size
of window L equals five frames. Since the maps do not have
the same magnitude, a standardization stage is necessary be-
fore carrying out the map fusion. This stage is carried out by
the following:

Sn =
{

S/Th if S < Th
1 if S ≥ Th

(6)

where S is a static or dynamic saliency map and Th is a pre-
defined threshold (25 in the two cases).

Once the maps have been normalized, a fusion stage is
achieved to combine all maps into a final saliency map. The
fusion is performed using the max operator which can be in-
terpreted as an “or” logical operator. Thus, the final map
contains static and dynamic information. Finally, the map
obtained is a gray image with a higher value for salient zones.

Thanks to image processing techniques, we detect the re-
gions of attention. The following steps are achieved: thresh-
olding, morphological operation (close and open), region se-
lection. In the last step, we determine the regions according

to 4-connected neighbourhood. The regions with area lower
than a threshold are removed. Finally, the remaining regions
are selected and defined as masks. If the number of masks is
greater than five, we keep only the five biggest masks. Fig-
ure 5 illustrates the fusion of maps and the selection of at-
tention masks: boat and surfers, crowd and players, and the
person.

Figure 5: Examples of spatio-temporal attention masks.

3. EXPERIMENTAL RESULTS

In order to test and to validate our model, we carried out
a psychophysical experiment. The goal of the experiment
was to know if the areas defined as salient by the model are
indeed salient. We tried to compare the model with human
perception.

3.1 Method

Subjects
Sixteen naive subjects underwent the experiment. All sub-
jects had normal or corrected to normal vision.

Stimuli
The subjects saw nine different videos displayed in the mid-
dle of the screen with a frequency of 25 images per second.
Videos were composed of 288x352 pixel-images in 256 gray-
levels. For one randomly selected image of one video, we
associate to it the spatio-temporal attention map using the
presented model. In order to test if the salient areas provided
by the model are in agreement with the human visual per-
ception we take exactly the same image and the same masks
but we apply the masks to random positions as shown in fig-
ure 6. The principle is as follows: the mask of model having
highest area is first randomly moved in the image; the second
mask having highest area is then moved but without possible
overlapping with the other mask and so on. . . Finally the two
images (fig 6) have the same masks but at different places in
the image.

Figure 6: Example of the target images. The left image is
the output of the presented model. The right one is the same
image with the same masks but placed in random positions.

Procedure



The experiment was processed with a computer with a Pen-
tium III processor. The stimuli were presented on a 21”
screen (Mitsubishi Diamond Pro2020u) with a resolution of
1024 by 768 pixels and a frame rate of 100 Hz. Subjects were
placed at a distance of approximately 50 cm from the screen.
Figure 7 describes the events for one trial: a fixation point ap-
peared (here a small black cross) in the middle of the screen
for two seconds, followed by a 1.2s video still in the middle
of the screen. Then, two images were presented symmetri-
cally in the middle of the screen. These images belonged
to the previous video and were masked in different ways:
one following the model and the other with random position
masks. The subject had to choose which one seemed to him
to be the closest to the video. The selected image should have
represented the best video content. His response and the re-
action time were measured with a response box and E-Prime
software. His answer had to be given as quickly as possible.

Each video appeared four times, with two different target
images in the two possible positions on the screen. So in two
cases the same images are used and in one case the image
provided by the model is on the right side of the screen and
in the other case is on the left. This allows us to have more
answers for one condition and to see if a subject gave his an-
swer randomly. The experiment is divided into three phases.
Each phase contains three videos and so twelve random tri-
als. During one experiment, each subject answered 36 trials.
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Figure 7: Experimental design: one trial sequence is illus-
trated. First, a video appeared for 1.2s, and then two images
appeared in the middle of the screen. The task was to choose
the image that is closest to the video.

3.2 Results

For the analysis we only kept fourteen subjects (two subjects
had random responses). We measured the percentage of cor-
rect responses per subject (the correct response is in the case
where the subject chose the model mask). Over all subjects
the mean correct response percentage is 88% with a mean
standard deviation of 5%. As we expected, for all subjects
the model masks correspond more to the video than the ran-
dom masks.

We can refine these results. For some masks there is an
overlapping between the model masks and the random ones.
So we should find fewer correct answers when the model
masks are overlapped with random masks rather than when
the masks are separated. So we added a condition: when
masks had more than 50% of overlapping and when masks
had less than 50% of overlapping. We made an analysis of
variance (ANOVA) for the percentage of correct response as

a function of these two conditions. The overlapping influ-
ences the correct response (F(1,13) < 0.001). So the per-
centage of correct responses is lower when the model masks
and the random masks are overlapped, which consolidates
the model.

4. CONCLUSION

We have presented a spatio-temporal attention model. It re-
lies on the fusion of a static model inspired by the human sys-
tem with a model of moving object detection. A psychophys-
ical experiment was proposed to judge the effectiveness of
the model. The proposed model provides good results with a
precision of 88%. These results are promising. In addition,
the model can be used in many applications such as video in-
dexing, summarization, watermarking and surveillance. One
of the future works would be to use this model to provide a
video summary and to use an experimental paradigm to test
the efficiency of the method.
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