

Abstract—The classification of Internet traffic is of interest in

areas like differentiated services and network security. Such
classification is usually done using the packet header field of ‘port
number’. However, recent developments in networking
techniques have rendered the port numbers unreliable for this
purpose. Our scheme of classification uses the distribution of
packet sizes in a buffer or collected during a short time interval at
a switch or router. We demonstrate that applications can be
classified by these distributions and, estimations of the amount of
each application is possible. We compare three methods for
estimation of the traffic in various applications; MMSE
estimation, POCS and neural networks. Detection of the presence
of individual applications can be done reliably. Methods that use
artificial neural networks performed best in our tests.

I. INTRODUCTION
The introduction of voice, video and other real-time
applications has changed the way the Internet is used. This has
triggered the need for a change in traffic handling on the
Internet. In particular, there is increasing demand for service
differentiation. The traffic on the Internet can be classified
using various parameters such as source and/or destination IP
address (or prefix), type-of-service, application, etc. We note
that we do not classify the traffic on a per-packet basis, rather
the traffic flows are classified as containing packets from
various types of applications that have different needs for timed
service. By identifying the flows that have significant
quantities of time-sensitive data, such as voice-over-IP or
real-time video, a switch or router can give preference to these
flows. This will allow an increase in quality of service (QoS).
In addition, the detection of certain applications, such as
peer-to-peer file transfer, such as Napster and eDonkey, can aid
the network administrator in limiting unwanted actions by
users.

Packets are identified in the network traffic by determining
to which application an incoming packet belongs. In this work,
we detect and estimate characteristics of Internet traffic based
on the application to which the packets belong. An easy
approach to classification is by extracting the port number from
the layer 4 (TCP/UDP) header [1]. However, there are certain
problems with this approach. With the increasing use of the

Network Address Port Translation (NAPT), the port numbers
may not be a trustworthy source for determining the application
type. In a free environment like the Internet, it is not mandatory
for applications to use specific port numbers [2]. If QoS were
based on port number, it is possible that other applications
would spoof port numbers in order to gain better service. For
this work, we use port number to establish the application for
recorded packet data. However, we recognize that this method
may yield some inaccuracies. As we shall see, this does not
appear to be a problem for our training data.

We propose using the packet size distribution as an indicator
of application type. The distribution is part of the application
software characteristics. While it may be changed, any change
to disguise its character would likely degrade performance. The
distribution is obtainable from the packet size field at OSI layer
3 i.e. the IP layer. We avoid prying into the TCP header, which
takes additional time and computation and may be encrypted in
the future. We read the TCP header in this work only to
establish training sets and performance measures.

The fact that applications can be identified by their packet
size distributions was shown in our previous work [3]. Even
though that work used data that is now several years old and
many characteristics have changed, the fact that applications
can be identified by their packet size distributions has not. Our
experience shows that, even though the character of the
distributions may evolve over a long time period, applications
may be distinguished based on this statistic.

II. DATA DESCRIPTION

A. Data Collection
The data for this project is collected from the North Carolina
State University backbone network using TCPDUMP software.
The data was collected continuously for four hours. Each 5
minute interval was recorded in a separate text file resulting in
48 data sets. The recorded parameters of interest are: Source
port number, Destination port number, Packet size (in bytes).
Note that packets may be reconfigured by subnets through
which they pass. Large packets may be divided into smaller
segments to pass through these networks. Having noted this,
the quantity in the header that is used to indicate the size of the
collection of bytes, will be referred to as packet size. The
applications were identified using the source and destination
port numbers depending on the port assignments by IANA [1].

Characterization, Estimation and Detection of
Network Application Traffic

H. J. Trussell, A. A. Nilsson, P. M. Patel and Y. Wang
Electrical and Computer Engineering Department

North Carolina State University
Raleigh, NC

The top 20 applications in the data, their associated port
numbers, their percentage in the total traffic and their
cumulative percentage are tabulated in Table 1 in the order of
their percentage in total traffic. All the other applications in the
traffic mixture are grouped under ‘Other’.

B. Histogram Generation
In order to reduce the dimensionality of the data, the Ethernet

packet sizes range from 60-1514 bytes was divided into a
manageable number of bins. Because of the sparseness of the
data in the histograms and to reduce the dimensionality of the
problem, we constructed histograms with variable bin sizes.
We first examined histograms with unit bin-width. Then new
bin sizes were determined based on the criterion that no two
peaks, seen in the unit bin-width histograms, fall in the same
histogram bin. The packet size distributions of some of the
major applications using 60 bins are shown in Figure 1.

Table 1. Top 20 Applications, its port numbers and %
Application Port # % Cum %

1 HTTP 80 15.28 15.28
2 Kazaa 1214 4.35 19.63
3 FTP 20 2.73 22.36
4 Gnutella 6346 1.77 24.12
5 Unassigned 3933 1.23 25.35
6 RTP 6970 1.13 26.48
7 Napster 6699 1.08 27.56
8 eDonkey 4662 0.97 28.52
9 AOL 5190 0.92 29.45

10 Multicast 16384 0.92 30.37
11 Half Life Server 27015 0.87 31.24
12 Plethora 3480 0.77 32.01
13 Reserved 0 0.63 32.64
14 IRC 6667 0.62 33.26
15 ms-olap2 2394 0.56 33.83
16 SMTP 25 0.54 34.37
17 Half Life Client 27005 0.54 34.91
18 ICAP 1344 0.52 35.43
19 tragic 2642 0.51 35.95
20 mloadd 1427 0.49 36.44
21 Other 63.56 100.00

C. Clustering Analysis
To verify the conjecture that applications could be reliably

characterized by their hisograms, we analyzed the histogram
collection using clustering. We used several clustering
methods, which all resulted in natural groupings of the
histograms of applications. The clustering results using Ward’s
method for 12 clusters are shown in Table 2, for the top 21
applications using a 60-bin histogram scheme. The percentages
in the table denote the percentage of the application in the
network traffic present in the cluster. From Table 2, it is clear
that for each application, all the 48 samples fall into a single
cluster. This shows the similarity of the applications.

III. ESTIMATION AND DETECTION

The total distribution of packet sizes at a particular network
node is the mixture of the distribution of the individual
applications. We can model the total network traffic as the
linear combination of major applications, as

 { } { }aBh EE = (1)

Figure 1. Packet Size Distribution of some applications

where }{⋅E is the expected value operator, 1×Mh is the total
network traffic distribution, given as an M bin histogram,

NM ×B is the distribution of M bins of a histogram of each of
the top N-1 applications and one histogram of the “other”, and

1×Na is the proportion of each of the applications. We know h
and B in a statistical sense by collecting packet samples over a
fixed period of time. Since the components of the mixture are
probability distributions, the elements of a are constrained to
the set aS defined in eq.(2).







 ≤≤∑ =∈=

=
10,1

1
k

N

k
k

N
a aaS Ra (2)

Table 2. Clustering 20 major applications and others into 12
clusters using Ward’s Minimum Variance method

Ward's Method 12 clusters - 60 bins
CL28 CL13 CL12 CL14 CL36 CL15 CL39 CL17 CL34 CL31 CL23 CL24

HTTP 100%
Kazaa 100%
FTP 100%
Gnutella 100%
Unassigned 100%
RTP 100%
Napster 100%
eDonkey 100%
AOL 100%
Multicast 100%
Half Life Server 100%
Plethora 100%
Reserved 100%
IRC 100%
ms-olap2 100%
SMTP 100%
Half Life Client 100%
ICAP 100%
tragic 100%
mloadd 100%
Other 100%

We can estimate { }BE , denoted as B , from observations. For
any particular time interval, we can estimate a from

 aBh = (3)
However, this would be a crude estimate since we know that for
any particular sampling interval the histogram associated with
any application will not be the mean. We can include this
uncertainty in the problem by writing

 a∆B)B(h += (4)
where ∆B represents the variation from the mean.

This paper gives a comparison of three methods of

estimating the percentage of traffic in each class, as well as
showing that detection of various important classes is possible
with very high accuracy. The estimation methods are
constrained least squares, projection onto convex sets (POCS)
and neural networks. The POCS methods can handle the
uncertainty in the basis matrix by using an approach similar to
total least squares (TLS). All of these methods are able to take
into account the constraints imposed by the fact that the
estimated quantities are probabilities. The usual TLS methods
cannot use these constraints directly in the solution
formulation.

The architecture used for the neural networks was a simple

single hidden layer with a single output neuron. In all cases, the
hidden neurons used a log-sigmoid function response. For
estimation, the output neuron used a linear function; while for
the detection case, the output neuron used a log-sigmoid
function. In the case of estimation, we found that using six
hidden neurons produced good results with no improvement in
performance if that number were increased. In the case of
detection, it was found that two hidden neurons were sufficient
to give good results, with little improvement if the number were
increased.

A typical result of estimation performance is given in Table 3.

The RMS error obtained by the neural networks is better than
the other methods. Note that this result is obtained by training
on one set of 24 samples and testing on the other set of 24. If
we limit the estimation to the percentage of a single application,
all methods improve but the neural net still performs best, as
shown in Table 4.

For detection of the presence of a single application, we

wished to estimate the probability of a specific application
being present in the traffic flow. The detection was done using
the neural network. Since the original data contains most
applications in each data set, to test detection, we created
artificial data sets, based on actual data files. These sets had
varying proportions of certain application packets. To create
these sets, we randomly remove P% of the target application
packets (RTP, Napster or eDonkey) and Q% of other
applications to form a new set, with }100,80,60,40,20,0{=P
and }30,20,10,0{=Q . This varies both the application under
study and its background traffic.

Table 3 Estimation of top 100 applications in set 1

CLLSQ POCS NN
HTTP 0.1532 0.0109 0.0027 0.0047
Kazza 0.0436 0.0108 0.0031 0.0029
FTP 0.0340 0.0339 0.0019 0.0092
Gnutella 0.0176 0.0132 0.0011 0.0008
Unassigned 0.0122 0.0156 0.0008 0.0087
RTP 0.0119 0.0014 0.0016 0.0004
Napster 0.0111 0.0035 0.0028 0.0004
eDonkey 0.0097 0.0127 0.0019 0.0003
AOL 0.0092 0.0030 0.0007 0.0004
Multicast 0.0092 0.0002 0.0036 0.0006
… … … … …
Other 0.4460 0.0240 0.0171 0.0136

0.0059 0.0027 0.0012

rms err

Average rms err

Application Average а

Table 4. Estimation of single application in set 1

CLLSQ POCS NN
RTP 0.0119 0.0010 0.0029 0.0004
Napster 0.0111 0.0016 0.0013 0.0001
eDonkey 0.0097 0.0052 0.0010 0.0002

rms error
Application Average а

The method obtains a very high accuracy of detecting the
present of specific applications, even at low percentages. Table
5 shows an example of the detection performance. The lower
detection rate of eDonkey is caused by the fact that eDonkey
has statistical properties that are similar to other applications.
This is apparent from the clustering methods that showed
separation of eDonkey from other applications late in the
process.

An advantage of the neural network approach is that the
weights associated with the hidden layer give a good indicator
of the importance of various bins in the histogram for detecting
the present of the applications. This will allow the reduction of
the size of the histograms and a corresponding decrease in
computation time.

We noted that we reduced the data histograms from 1514
bins to 60 using simple heuristics. This reduced computation
time and the amount of information that needs to be stored. By
considering the weight vectors associated with the input to the
hidden layer neurons, we can determine if this number of bins
can be reduced further. Very small weight on a particular bin of
input vectors for all neurons indicates that this bin is not needed
for estimation or detection.

An example of the weights for a realization of the six hidden

neuron estimation networks is shown in Figure 2. We notice
that bins which are associated with smaller size packets play an
important role in our estimation experiments. While bins in the
range of [10, 12], [21, 23], [35, 45] and [55, 60] always have
small weights. We can eliminate them in the future histogram
generation.

In the detection problem, the weights for two neurons are

shown for the cases of Napster and eDonkey in Figures 3 and 4,
respectively. The applications have their own characteristic
bins, but they are not the same. In all test cases for training, the
significant weights in the two neurons usually appear at the
same bins. It should be noted that it was not possible to reduce
the number of hidden neurons to one and maintain acceptable
detection performance.

Table 5. Detection results of RTP, Napster and eDonkey

S12 S21 S12 S21 S12 S21
0 0 100 100 100 100 100 100
0 10 100 100 100 100 100 100
0 20 100 100 100 100 100 100
0 30 100 100 100 100 100 100

20 0 100 100 100 100 100 100
20 10 100 100 100 100 100 100
20 20 100 100 100 100 100 100
20 30 100 100 100 100 100 100
40 0 100 100 100 100 100 100
40 10 100 100 100 100 100 100
40 20 100 100 100 100 100 100
40 30 100 100 100 100 100 100
60 0 100 100 100 100 100 100
60 10 100 100 100 100 100 100
60 20 100 100 100 100 100 100
60 30 100 100 100 100 100 100
80 0 100 100 92 100 88 96
80 10 100 100 100 100 96 96
80 20 100 100 100 100 100 100
80 30 100 100 100 100 100 100

100 0 100 100 100 54 75 33
100 10 100 100 100 54 75 38
100 20 100 100 100 54 79 33
100 30 100 100 100 54 75 33

RTP Napster eDonkey
P% Q%

Figure 2. Weights of 6 hidden layer neurons in estimation of the
percentage of 21 applications

Figure 3. Weights of hidden layer neurons in Napster detection

Figure 4. Weights of hidden layer neurons in eDonkey
detection

REFERENCES
[1] Assigned Port Numbers Available:

http://www.iana.org/assignments/port-numbers
[2] Fulu Li, Nabil Seddigh, Biswajit Nandy, Diego Malute, “An

empirical study of today’s Internet traffic for Differentiated
Services IP QoS”, Proceedings of ISCC 2000.

[3] Chintan Trivedi, H. Joel Trussell, Arne A. Nilsson and Mo-Yuen
Chow, “Implicit Traffic Classification for Service
Differentiation,” ITC Workshop, July 24&25, 2002, Wurtzburg,
Germany

	Index
	EUSIPCO 2005

	Conference Info
	Welcome Messages
	Sponsors
	Committees
	Venue Information
	Special Info

	Sessions
	Sunday 4, September 2005
	SunPmPO1-SIMILAR Interfaces for Handicapped

	Monday 5, September 2005
	MonAmOR1-Adaptive Filters (Oral I)
	MonAmOR2-Brain Computer Interface
	MonAmOR3-Speech Analysis, Production and Perception
	MonAmOR4-Hardware Implementations of DSP Algorithms
	MonAmOR5-Independent Component Analysis and Source Sepe ...
	MonAmOR6-MIMO Propagation and Channel Modeling (SPECIAL ...
	MonAmOR7-Adaptive Filters (Oral II)
	MonAmOR8-Speech Synthesis
	MonAmOR9-Signal and System Modeling and System Identifi ...
	MonAmOR10-Multiview Image Processing
	MonAmOR11-Cardiovascular System Analysis
	MonAmOR12-Channel Modeling, Estimation and Equalization
	MonPmPS1-PLENARY LECTURE (I)
	MonPmOR1-Signal Reconstruction
	MonPmOR2-Image Segmentation and Performance Evaluation
	MonPmOR3-Model-Based Sound Synthesis (I) (SPECIAL SES ...
	MonPmOR4-Security of Data Hiding and Watermarking (I) ...
	MonPmOR5-Geophysical Signal Processing (I) (SPECIAL S ...
	MonPmOR6-Speech Recognition
	MonPmPO1-Channel Modeling, Estimation and Equalization
	MonPmPO2-Nonlinear Methods in Signal Processing
	MonPmOR7-Sampling, Interpolation and Extrapolation
	MonPmOR8-Modulation, Encoding and Multiplexing
	MonPmOR9-Multichannel Signal Processing
	MonPmOR10-Ultrasound, Radar and Sonar
	MonPmOR11-Model-Based Sound Synthesis (II) (SPECIAL S ...
	MonPmOR12-Geophysical Signal Processing (II) (SPECIAL ...
	MonPmPO3-Image Segmentation and Performance Evaluation
	MonPmPO4-DSP Implementation

	Tuesday 6, September 2005
	TueAmOR1-Segmentation and Object Tracking
	TueAmOR2-Image Filtering
	TueAmOR3-OFDM and MC-CDMA Systems (SPECIAL SESSION)
	TueAmOR4-NEWCOM Session on the Advanced Signal Processi ...
	TueAmOR5-Bayesian Source Separation (SPECIAL SESSION)
	TueAmOR6-SIMILAR Session on Multimodal Signal Processin ...
	TueAmPO1-Image Watermarking
	TueAmPO2-Statistical Signal Processing (Poster I)
	TueAmOR7-Multicarrier Systems and OFDM
	TueAmOR8-Image Registration and Motion Estimation
	TueAmOR9-Image and Video Filtering
	TueAmOR10-NEWCOM Session on the Advanced Signal Process ...
	TueAmOR11-Novel Directions in Information Theoretic App ...
	TueAmOR12-Partial Update Adaptive Filters and Sparse Sy ...
	TueAmPO3-Biomedical Signal Processing
	TueAmPO4-Statistical Signal Processing (Poster II)
	TuePmPS1-PLENARY LECTURE (II)

	Wednesday 7, September 2005
	WedAmOR1-Nonstationary Signal Processing
	WedAmOR2-MIMO and Space-Time Processing
	WedAmOR3-Image Coding
	WedAmOR4-Detection and Estimation
	WedAmOR5-Methods to Improve and Measures to Assess Visu ...
	WedAmOR6-Recent Advances in Restoration of Audio (SPECI ...
	WedAmPO1-Adaptive Filters
	WedAmPO2-Multirate filtering and filter banks
	WedAmOR7-Filter Design and Structures
	WedAmOR8-Space-Time Coding, MIMO Systems and Beamformin ...
	WedAmOR9-Security of Data Hiding and Watermarking (II ...
	WedAmOR10-Recent Applications in Time-Frequency Analysi ...
	WedAmOR11-Novel Representations of Visual Information f ...
	WedAmPO3-Image Coding
	WedAmPO4-Video Coding
	WedPmPS1-PLENARY LECTURE (III)
	WedPmOR1-Speech Coding
	WedPmOR2-Bioinformatics
	WedPmOR3-Array Signal Processing
	WedPmOR4-Sensor Signal Processing
	WedPmOR5-VESTEL Session on Video Coding (Oral I)
	WedPmOR6-Multimedia Communications and Networking
	WedPmPO1-Signal Processing for Communications
	WedPmPO2-Image Analysis, Classification and Pattern Rec ...
	WedPmOR7-Beamforming
	WedPmOR8-Synchronization
	WedPmOR9-Radar
	WedPmOR10-VESTEL Session on Video Coding (Oral II)
	WedPmOR11-Machine Learning
	WedPmPO3-Multiresolution and Time-Frequency Processing
	WedPmPO4-I) Machine Vision, II) Facial Feature Analysis

	Thursday 8, September 2005
	ThuAmOR1-3DTV (I) (SPECIAL SESSION)
	ThuAmOR2-Performance Analysis, Optimization and Limits ...
	ThuAmOR3-Face and Head Recognition
	ThuAmOR4-MIMO Receivers (SPECIAL SESSION)
	ThuAmOR5-Particle Filtering (SPECIAL SESSION)
	ThuAmOR6-Geometric Compression (SPECIAL SESSION)
	ThuAmPO1-Speech, speaker and language recognition
	ThuAmPO2-Topics in Audio Processing
	ThuAmOR7-Statistical Signal Analysis
	ThuAmOR8-Image Watermarking
	ThuAmOR9-Source Localization
	ThuAmOR10-MIMO Hardware and Rapid Prototyping (SPECIAL ...
	ThuAmOR11-BIOSECURE Session on Multimodal Biometrics (...
	ThuAmOR12-3DTV (II) (SPECIAL SESSION)
	ThuAmPO3-Biomedical Signal Processing (Human Neural Sys ...
	ThuAmPO4-Speech Enhancement and Noise Reduction
	ThuPmPS1-PLENARY LECTURE (IV)
	ThuPmOR1-Isolated Word Recognition
	ThuPmOR2-Biomedical Signal Analysis
	ThuPmOR3-Multiuser Communications (I)
	ThuPmOR4-Architecture and VLSI Hardware (I)
	ThuPmOR5-Signal Processing for Music
	ThuPmOR6-BIOSECURE Session on Multimodal Biometrics (I ...
	ThuPmPO1-Multimedia Indexing and Retrieval
	ThuPmOR7-Architecture and VLSI Hardware (II)
	ThuPmOR8-Multiuser Communications (II)
	ThuPmOR9-Communication Applications
	ThuPmOR10-Astronomy
	ThuPmOR11-Face and Head Motion and Models
	ThuPmOR12-Ultra wideband (SPECIAL SESSION)

	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Ö
	Ø

	Papers
	Papers by Session
	All papers

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	Copyright
	About
	Current paper
	Presentation session
	Abstract
	Authors
	Yi Wang
	Parita Patel
	Arne Nilsson
	H. Joel Trussell

