
  

  
Abstract—The classification of Internet traffic is of interest in 

areas like differentiated services and network security. Such  
classification is usually done using the packet header field of ‘port 
number’. However, recent developments in networking 
techniques have rendered the port numbers unreliable for this 
purpose. Our scheme of classification uses the distribution of 
packet sizes in a buffer or collected during a short time interval at 
a switch or router. We demonstrate that applications can be 
classified by these distributions and, estimations of the amount of 
each application is possible. We compare three methods for 
estimation of the traffic in various applications; MMSE 
estimation, POCS and neural networks. Detection of the presence 
of individual applications can be done reliably. Methods that use 
artificial neural networks performed best in our tests.  
 

I. INTRODUCTION 
The introduction of voice, video and other real-time 
applications has changed the way the Internet is used. This has 
triggered the need for a change in traffic handling on the 
Internet. In particular, there is increasing demand for service 
differentiation. The traffic on the Internet can be classified 
using various parameters such as source and/or destination IP 
address (or prefix), type-of-service, application, etc. We note 
that we do not classify the traffic on a per-packet basis, rather 
the traffic flows are classified as containing packets from 
various types of applications that have different needs for timed 
service. By identifying the flows that have significant 
quantities of time-sensitive data, such as voice-over-IP or 
real-time video, a switch or router can give preference to these 
flows. This will allow an increase in quality of service (QoS). 
In addition, the detection of certain applications, such as 
peer-to-peer file transfer, such as Napster and eDonkey, can aid 
the network administrator in limiting unwanted actions by 
users.  

Packets are identified in the network traffic by determining 
to which application an incoming packet belongs. In this work, 
we detect and estimate characteristics of Internet traffic based 
on the application to which the packets belong. An easy 
approach to classification is by extracting the port number from 
the layer 4 (TCP/UDP) header [1]. However, there are certain 
problems with this approach. With the increasing use of the 

 
 

Network Address Port Translation (NAPT), the port numbers 
may not be a trustworthy source for determining the application 
type. In a free environment like the Internet, it is not mandatory 
for applications to use specific port numbers [2]. If QoS were 
based on port number, it is possible that other applications 
would spoof port numbers in order to gain better service. For 
this work, we use port number to establish the application for 
recorded packet data. However, we recognize that this method 
may yield some inaccuracies. As we shall see, this does not 
appear to be a problem for our training data.  

We propose using the packet size distribution as an indicator 
of application type. The distribution is part of the application 
software characteristics. While it may be changed, any change 
to disguise its character would likely degrade performance. The 
distribution is obtainable from the packet size field at OSI layer 
3 i.e. the IP layer. We avoid prying into the TCP header, which 
takes additional time and computation and may be encrypted in 
the future.  We read the TCP header in this work only to 
establish training sets and performance measures.  

The fact that applications can be identified by their packet 
size distributions was shown in our previous work [3]. Even 
though that work used data that is now several years old and 
many characteristics have changed, the fact that applications 
can be identified by their packet size distributions has not. Our 
experience shows that, even though the character of the 
distributions may evolve over a long time period, applications 
may be distinguished based on this statistic.  

II. DATA DESCRIPTION 

A. Data Collection 
The data for this project is collected from the North Carolina 
State University backbone network using TCPDUMP software. 
The data was collected continuously for four hours. Each 5 
minute interval was recorded in a separate text file resulting in 
48 data sets. The recorded parameters of interest are: Source 
port number, Destination port number, Packet size (in bytes). 
Note that packets may be reconfigured by subnets through 
which they pass. Large packets may be divided into smaller 
segments to pass through these networks. Having noted this, 
the quantity in the header that is used to indicate the size of the 
collection of bytes, will be referred to as packet size. The 
applications were identified using the source and destination 
port numbers depending on the port assignments by IANA [1]. 
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The top 20 applications in the data, their associated port 
numbers, their percentage in the total traffic and their 
cumulative percentage are tabulated in Table 1 in the order of 
their percentage in total traffic. All the other applications in the 
traffic mixture are grouped under ‘Other’. 

B. Histogram Generation 
In order to reduce the dimensionality of the data, the Ethernet 

packet sizes range from 60-1514 bytes was divided into a 
manageable number of bins. Because of the sparseness of the 
data in the histograms and to reduce the dimensionality of the 
problem, we constructed histograms with variable bin sizes. 
We first examined histograms with unit bin-width. Then new 
bin sizes were determined based on the criterion that no two 
peaks, seen in the unit bin-width histograms, fall in the same 
histogram bin. The packet size distributions of some of the 
major applications using 60 bins are shown in Figure 1.  
 

Table 1. Top 20 Applications, its port numbers and % 
Application Port # % Cum %

1 HTTP 80 15.28 15.28
2 Kazaa 1214 4.35 19.63
3 FTP 20 2.73 22.36
4 Gnutella 6346 1.77 24.12
5 Unassigned 3933 1.23 25.35
6 RTP 6970 1.13 26.48
7 Napster 6699 1.08 27.56
8 eDonkey 4662 0.97 28.52
9 AOL 5190 0.92 29.45

10 Multicast 16384 0.92 30.37
11 Half Life Server 27015 0.87 31.24
12 Plethora 3480 0.77 32.01
13 Reserved 0 0.63 32.64
14 IRC 6667 0.62 33.26
15 ms-olap2 2394 0.56 33.83
16 SMTP 25 0.54 34.37
17 Half Life Client 27005 0.54 34.91
18 ICAP 1344 0.52 35.43
19 tragic 2642 0.51 35.95
20 mloadd 1427 0.49 36.44
21 Other 63.56 100.00  

C. Clustering Analysis 
To verify the conjecture that applications could be reliably 

characterized by their hisograms, we analyzed the histogram 
collection using clustering. We used several clustering 
methods, which all resulted in natural groupings of the 
histograms of applications. The clustering results using Ward’s 
method for 12 clusters are shown in Table 2, for the top 21 
applications using a 60-bin histogram scheme. The percentages 
in the table denote the percentage of the application in the 
network traffic present in the cluster. From Table 2, it is clear 
that for each application, all the 48 samples fall into a single 
cluster. This shows the similarity of the applications. 

III. ESTIMATION AND DETECTION 
 

The total distribution of packet sizes at a particular network 
node is the mixture of the distribution of the individual 
applications. We can model the total network traffic as the 
linear combination of major applications, as 

                                  { } { }aBh EE =                                 (1) 

 

  

 

 
Figure 1. Packet Size Distribution of some applications 

where }{⋅E  is the expected value operator, 1×Mh  is the total 
network traffic distribution, given as an M bin histogram, 

NM ×B  is the distribution of M bins of a histogram of each of 
the top N-1 applications and one histogram of the “other”, and 

1×Na  is the proportion of each of the applications. We know h  
and B  in a statistical sense by collecting packet samples over a 
fixed period of time. Since the components of the mixture are 
probability distributions, the elements of a  are constrained to 
the set aS  defined in eq.(2). 
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Table 2. Clustering 20 major applications and others into 12 
clusters using Ward’s Minimum Variance method 

Ward's Method 12 clusters - 60 bins
CL28 CL13 CL12 CL14 CL36 CL15 CL39 CL17 CL34 CL31 CL23 CL24

HTTP 100%
Kazaa 100%
FTP 100%
Gnutella 100%
Unassigned 100%
RTP 100%
Napster 100%
eDonkey 100%
AOL 100%
Multicast 100%
Half Life Server 100%
Plethora 100%
Reserved 100%
IRC 100%
ms-olap2 100%
SMTP 100%
Half Life Client 100%
ICAP 100%
tragic 100%
mloadd 100%
Other 100%  

                     
We can estimate { }BE , denoted as B , from observations. For 
any particular time interval, we can estimate a  from 

                                         aBh =                                     (3) 
However, this would be a crude estimate since we know that for 
any particular sampling interval the histogram associated with 
any application will not be the mean. We can include this 
uncertainty in the problem by writing 

                                   a∆B)B(h +=                               (4) 
where ∆B represents the variation from the mean.  

 
This paper gives a comparison of three methods of 

estimating the percentage of traffic in each class, as well as 
showing that detection of various important classes is possible 
with very high accuracy. The estimation methods are 
constrained least squares, projection onto convex sets (POCS) 
and neural networks. The  POCS methods can handle the 
uncertainty in the basis matrix by using an approach similar to 
total least squares (TLS). All of these methods are able to take 
into account the constraints imposed by the fact that the 
estimated quantities are probabilities. The usual TLS methods 
cannot use these constraints directly in the solution 
formulation.  

 
The architecture used for the neural networks was a simple 

single hidden layer with a single output neuron. In all cases, the 
hidden neurons used a log-sigmoid function response. For 
estimation, the output neuron used a linear function; while for 
the detection case, the output neuron used a log-sigmoid 
function. In the case of estimation, we found that using six 
hidden neurons produced good results with no improvement in 
performance if that number were increased. In the case of 
detection, it was found that two hidden neurons were sufficient 
to give good results, with little improvement if the number were 
increased. 

 
A typical result of estimation performance is given in Table 3. 

The RMS error obtained by the neural networks is better than 
the other methods. Note that this result is obtained by training 
on one set of 24 samples and testing on the other set of  24.  If 
we limit the estimation to the percentage of a single application, 
all methods improve but the neural net still performs best, as 
shown in Table 4. 

 
For detection of the presence of a single application, we 

wished to estimate the probability of a specific application 
being present in the traffic flow. The detection was done using 
the neural network. Since the original data contains most 
applications in each data set, to test detection, we created 
artificial data sets, based on actual data files. These sets had 
varying proportions of certain application packets. To create 
these sets, we randomly remove P% of the target application 
packets (RTP, Napster or eDonkey) and Q% of other 
applications to form a new set, with }100,80,60,40,20,0{=P  
and }30,20,10,0{=Q . This varies both the application under 
study and its background traffic. 

 

Table 3 Estimation of top 100 applications in set 1 

CLLSQ POCS NN
HTTP 0.1532 0.0109 0.0027 0.0047
Kazza 0.0436 0.0108 0.0031 0.0029
FTP 0.0340 0.0339 0.0019 0.0092
Gnutella 0.0176 0.0132 0.0011 0.0008
Unassigned 0.0122 0.0156 0.0008 0.0087
RTP 0.0119 0.0014 0.0016 0.0004
Napster 0.0111 0.0035 0.0028 0.0004
eDonkey 0.0097 0.0127 0.0019 0.0003
AOL 0.0092 0.0030 0.0007 0.0004
Multicast 0.0092 0.0002 0.0036 0.0006
… … … … …
Other 0.4460 0.0240 0.0171 0.0136

0.0059 0.0027 0.0012

rms err

Average rms err

Application Average а

 
 

Table 4. Estimation of single application in set 1 

CLLSQ POCS NN
RTP 0.0119 0.0010 0.0029 0.0004
Napster 0.0111 0.0016 0.0013 0.0001
eDonkey 0.0097 0.0052 0.0010 0.0002

rms error
Application Average а

 
 

 
The method obtains a very high accuracy of detecting the 
present of specific applications, even at low percentages. Table 
5 shows an example of the detection performance. The lower 
detection rate of eDonkey is caused by the fact that eDonkey 
has statistical properties that are similar to other applications. 
This is apparent from the clustering methods that showed 
separation of eDonkey from other applications late in the 
process.  



  

 
An advantage of the neural network approach is that the 
weights associated with the hidden layer give a good indicator 
of the importance of various bins in the histogram for detecting 
the present of the applications. This will allow the reduction of 
the size of the histograms and a corresponding decrease in 
computation time.  
 

We noted that we reduced the data histograms from 1514 
bins to 60 using simple heuristics. This reduced computation 
time and the amount of information that needs to be stored. By 
considering the weight vectors associated with the input to the 
hidden layer neurons, we can determine if this number of bins 
can be reduced further. Very small weight on a particular bin of 
input vectors for all neurons indicates that this bin is not needed 
for estimation or detection.  

 
An example of the weights for a realization of the six hidden 

neuron estimation networks is shown in Figure 2. We notice 
that bins which are associated with smaller size packets play an 
important role in our estimation experiments. While bins in the 
range of [10, 12], [21, 23], [35, 45] and [55, 60] always have 
small weights. We can eliminate them in the future histogram 
generation. 

 
In the detection problem, the weights for two neurons are 

shown for the cases of Napster and eDonkey in Figures 3 and 4, 
respectively. The applications have their own characteristic 
bins, but they are not the same. In all test cases for training, the 
significant weights in the two neurons usually appear at the 
same bins. It should be noted that it was not possible to reduce 
the number of hidden neurons to one and maintain acceptable 
detection performance.  

 

Table 5. Detection results of RTP, Napster and eDonkey 

S12 S21 S12 S21 S12 S21
0 0 100 100 100 100 100 100
0 10 100 100 100 100 100 100
0 20 100 100 100 100 100 100
0 30 100 100 100 100 100 100

20 0 100 100 100 100 100 100
20 10 100 100 100 100 100 100
20 20 100 100 100 100 100 100
20 30 100 100 100 100 100 100
40 0 100 100 100 100 100 100
40 10 100 100 100 100 100 100
40 20 100 100 100 100 100 100
40 30 100 100 100 100 100 100
60 0 100 100 100 100 100 100
60 10 100 100 100 100 100 100
60 20 100 100 100 100 100 100
60 30 100 100 100 100 100 100
80 0 100 100 92 100 88 96
80 10 100 100 100 100 96 96
80 20 100 100 100 100 100 100
80 30 100 100 100 100 100 100

100 0 100 100 100 54 75 33
100 10 100 100 100 54 75 38
100 20 100 100 100 54 79 33
100 30 100 100 100 54 75 33

RTP Napster eDonkey
P% Q%

 
 

 
Figure 2. Weights of 6 hidden layer neurons in estimation of the 
percentage of 21 applications 

 

Figure 3. Weights of hidden layer neurons in Napster detection 

  
Figure 4. Weights of hidden layer neurons in eDonkey 
detection 
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