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ABSTRACT
Decentralized Kalman filters are often used in multi-sensor target
tracking as such a distributed fusion architecture has several ad-
vantages compared with centralized ones. On the other hand, dis-
tributed fusion is not only conceptually more complex but the re-
quired bandwidth is also likely to be a lot higher. However, a trade-
off between bandwidth and performance is possible. In this work,
the worst case performance degradation due to a reduction in com-
munication rate between the processing nodes of a decentralized
Kalman filter is derived analytically and verified by simulations.

1. INTRODUCTION

In multi-sensor target tracking a centralized fusion architecture was
used traditionally where all the data from the different sensors is
sent to a single location to be fused. In recent years, increasing
emphasis has been placed on distributed fusion where several fusion
nodes exist in the network, like e.g. the Decentralized Kalman Filter
(DKF).

The advantages of such a distributed fusion architecture are a
higher robustness due to redundancy of fusion nodes and a lower
processing load at each fusion node. For a large number of sensors,
centralized fusion might not even be applicable at all if the central
processor or the network cannot handle the large amount of data
transmitted by the sensors.

On the other hand, distributed fusion is not only conceptually
more complex but the required bandwidth is also likely to be a lot
higher compared with centralized fusion. However, in contrast to
centralized fusion, a trade-off between bandwidth and performance
is possible by letting the fusion nodes communicate at reduced rates.
In this case, the performance degrades as the information conveyed
by the different local processors becomes correlated due to propa-
gating the same underlying process noise [1, 2].

In [1], a formula for the steady-state performance of a DKF
was derived and compared with simulative results for two sensors
and a constant velocity model for the target dynamics. In this work
a simple formula for the performance degradation in the worst case
of ignoring the correlation completely is derived whose evaluation
is straightforward compared with the solution of the asymmetric
Lyapunov equation in [1]. Furthermore, the simulative study is ex-
tended to a constant acceleration model and its implications. To
keep the treatment simple, we also want to focus on communica-
tion issues in a simple DKF consisting of two Local Kalman Filters
(LKFs) producing track estimates based on a single local Sensor
(S) and a Fusion Center (FC) combining these local estimates to a
global one, as depicted in Fig. 1.

This paper is organized as follows: The DKF is introduced in
Sect. 2. Sect. 3 provides the theoretical background on why the
DKF requires more communication bandwidth and on how it can be
reduced. In Sect. 4, the performance degradation for the worst case
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Figure 1: DKF for two sensors

of ignoring the correlation between the local estimates completely
is derived and validated by simulations. Finally, Sect. 5 draws some
conclusions.

2. DECENTRALIZED KALMAN FILTER

For a Kalman Filter (KF) to be applicable, the target’s dynamics
need to be modeled by the following state space equation

x(k +1) = Fx(k)+w(k) , (1)

where x(k) is the state vector of the target at time instant k, typically
containing the target position, velocity etc. F is the time-invariant
state transition matrix and w(k) a white noise sequence with covari-
ance matrix Q(k) representing the process noise.

Respectively, the linear measurement models are given by

yi(k) = Hix(k)+vi(k) , (2)

where yi(k) is the observation vector of the ith sensor, i = 1, . . . ,N.
In our case, N = 2 sensors measure the position of the target. Hi
is the corresponding measurement matrix and vi(k) a zero-mean,
white noise sequence with covariance matrix Ri(k) representing the
measurement noise.

According to these model equations, the centralized KF (CKF)
algorithm in its information form with multiple inputs can be de-
scribed as recursively performing the following two steps to cal-
culate the overall position estimate x̂CKF(k|k) and error covariance
matrix PCKF(k|k) at time instant k [3]:
1. Prediction

x̂CKF(k|k−1) = Fx̂CKF(k−1|k−1) (3)

PCKF(k|k−1) = FPCKF(k−1|k−1)FT +Q(k−1) (4)

2. Estimate correction

x̂CKF(k|k) = PCKF(k|k)
(

P−1
CKF(k|k−1)x̂CKF(k|k−1)

+
N

∑
i=1

HT
i R−1

i (k)yi(k)
)

(5)

P−1
CKF(k|k) = P−1

CKF(k|k−1)+
N

∑
i=1

HT
i R−1

i (k)Hi . (6)



This is called the information form as the inverse of the covariance
matrix P−1 is a measure for the accuracy of the corresponding state
estimate x̂ and thus for the information contained in it. As described
by Eq. (5), P−1(k|k−1) determines the weight given to x̂(k|k−1).

In the decentralized KF (DKF), the LKFs produce estimates
x̂i(k|k) based on the information available from a single sensor i
using the standard KF equations, i.e. Eqs. (3-6) with N = 1. At
the FC, these estimates are fused together to form the overall state
estimate x̂DKF(k|k) [2] (see Fig. 1)

x̂DKF(k|k) = PDKF(k|k)
(

P−1
DKF(k|k−1)x̂DKF(k|k−1) (7)

+
N

∑
i=1

[

P−1
i (k|k)x̂i(k|k)−P−1

i (k|k−1)x̂i(k|k−1)
]

)

P−1
DKF(k|k) = P−1

DKF(k|k−1)+
N

∑
i=1

[

P−1
i (k|k)−P−1

i (k|k−1)
]

,

(8)

where PDKF and Pi are the error covariance matrices of the state
estimates x̂DKF at the FC and x̂i at the LKFs, respectively.

The state estimate x̂DKF(k|k) in Eq. (7) can be shown
to be equivalent to x̂CKF(k|k) in Eq. (5): Solving Eq. (5)
adapted to the single sensor case, i.e. N = 1, for the weighted
measurement HT

i R−1
i (k)yi(k) leads to the equivalence between

HT
i R−1

i (k)yi(k) in Eq. (5) and the gain in information between the
predicted local estimates x̂i(k|k−1) and the corrected ones x̂i(k|k)
in Eq. (7)

HT
i R−1

i (k)yi(k) = P−1
i (k|k)x̂i(k|k)−P−1

i (k|k−1)x̂i(k|k−1) .
(9)

3. COMMUNICATION CONSTRAINTS

In a distributed fusion network the required bandwidth is likely to
be a lot higher compared with a centralized architecture. First, the
information packages in a DKF are larger as the state vector usually
is of a higher dimension compared with the measurement vector.
Second, for realistic applications with many sensors a distributed
fusion architecture with several fusion nodes is used typically. Thus,
many more nodes exist in the network, which need to communicate
with each other. This is especially important if the final estimate
shall be obtained at several fusion nodes. Therefore, constraints on
communication bandwidth are an important issue in DKFs.

On the other hand, centralized fusion might not even be appli-
cable at all for a large number of sensors if the central processor
or the network cannot handle the large amount of data transmitted
by the sensors. In this case, the DKF opens up the possibility to
distribute the processing load and to save the necessary bandwidth
by letting the LKFs communicate with the FC less frequently. The
update rate at the LKFs is, however, not affected. The LKFs still
run at the sensor observation rate.

Reducing the communication rate by a factor m results in all
predictions by one step being replaced with predictions by m steps
in Eqs. (7,8). The predictions, however, account for the common
history of the local estimates x̂i(k|k). The different x̂i(k|k) are cor-
related due to propagating the same underlying process noise w(k)
in Eq. (1) [4]. If the predictions by one step are replaced by predic-
tions by m steps, the correlation that has been built up since the last
update cannot be removed during the fusion process, and the perfor-
mance of the DKF degrades [1, 2]. On the other hand, if w(k) = 0,
i.e. the target’s dynamics can be modeled exactly, the local esti-
mates x̂i(k|k) are not correlated and, therefore, the communication
rate can be reduced at will without any performance degradation.

For less and less frequent communication between the LKFs
and the FC, i.e. m → ∞, the information contained in the pre-
dicted state estimates becomes less and less reliable. This is rep-
resented by the inverses of the corresponding error covariance ma-
trices P−1

DKF(k|k−m) and P−1
i (k|k−m) approaching zero. Thus,

no weight is given to these estimates and they can be discarded in
Eqs. (7, 8) leading to

x̂simple(k|k) = Psimple(k|k)
N

∑
i=1

P−1
i (k|k)x̂i(k|k) (10)

P−1
simple(k|k) =

N

∑
i=1

P−1
i (k|k) . (11)

This is equivalent to a simple fusion architecture that assumes
the local state estimates x̂i(k|k) and x̂ j(k|k) to be statistically inde-
pendent for all i 6= j. Therefore, the estimate x̂simple(k|k) can serve
as a worst case scenario. More frequent communication necessarily
leads to better estimates.

4. SIMPLE FUSION ARCHITECTURE

In this section the performance degradation due to ignoring the cor-
relation between the local estimates is investigated in detail. First,
the performance of the DKFsimple defined by Eqs. (10, 11) is de-
rived analytically. Second, the analytical performance is compared
with simulative results.

4.1 Analytical Performance Analysis
Introducing x̃∗(k|k) = x̂∗(k|k) − x(k) in Eq. (10), where * ei-
ther stands for “simple” or i, and after some algebraic ma-
nipulations, it follows for the true covariance Ptrue(k|k) =

E
{

x̃simple(k|k)x̃
T
simple(k|k)

}

of the DKFsimple

Ptrue(k|k) = Psimple(k|k)+Psimple(k|k) (12)

·
( N

∑
i=1

N

∑
j=1
j 6=i

P−1
i (k|k)Σi, j(k|k)P

−1
j (k|k)

)

Psimple(k|k) .

where the cross-covariance Σi, j(k|k) = E
{

x̃i(k|k)x̃
T
j (k|k)

}

be-
tween two local estimates can be determined using [4]

Σi, j(k|k) = (I−Ki(k)Hi) · (FΣi, j(k−1|k−1)FT

+Q) · (I−K j(k)H j)
T

. (13)

I denotes the identity matrix and Ki(k) as well as K j(k) the
Kalman gains.

The worst case that all sensors are equal, i.e.
Pi(k|k) =: PLKF(k|k) ∀i, also results in Σi, j(k|k) = Σ j,i(k|k) =:
ΣLKFs(k|k) ∀i, j. Therefore, the true covariance simplifies to

Ptrue(k|k) =
1
N

PLKF(k|k)+
N −1

N
ΣLKFs(k|k) , (14)

as Psimple(k|k) = 1
N PLKF(k|k). The evaluation of Eqs. (12, 14) is

straightforward compared with the solution of the asymmetric Lya-
punov equation describing the steady-state performance of a DKF
for arbitrary communication rates in [1].

4.2 Simulative Validation
This theoretical performance of the DKFsimple is now compared
with simulative results. For simplicity the comparison is restricted
to 1D models and the case of N = 2 identical sensors, which mea-
sure the position in Cartesian coordinates

yi(k) = x(k)+ vi(k) , i = 1,2 (15)

with equal variances σ 2
v,i = σ2

v . 1000 Monte Carlo runs with 400
measurements per simulation were performed. The averages, how-
ever, are only based on the last 200 measurements to obtain an esti-
mate of the steady-state performance.
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Figure 2: Relative difference between MSEsimple and MSEDKF as a
function of the target maneuvering index µ for the constant velocity
(CV) and the constant acceleration (CA) model (Ts = 0.1s,1s,10s;
σv = 0.1m,1m,10m)

In [5], the case of a Constant Velocity (CV) model has already
been examined. The CV model, which is excited by discretized
continuous-time white noise, is defined by

[

x(k +1)
ẋ(k +1)

]

=

[

1 Ts
0 1

][

x(k)
ẋ(k)

]

+wCV(k) , (16)

where Ts denotes the sampling period and

wCV(k) =
∫ Ts

0

[

Ts − t
1

]

uCV(kTs + t)dt (17)

with uCV(t) being a zero-mean continuous random noise sequence
with power spectral density N0,CV. It was found that the relative
difference

∆1 =
MSEsimple −MSEDKF

MSEDKF

!
=

P11
true −P11

DKF
P11

DKF
(18)

(P11 indicates the upper left element of matrix P) between the Mean
Square Error (MSE) in the position estimate of the DKFsimple and
the DKF is invariant with respect to varying sampling periods Ts
and measurement noises σv (see Fig. 2) if plotted against the target
maneuvering index [3]

µCV =

√

N0,CVT 3
s

σ2
v

. (19)

In Fig. 2, it can be seen as well that the curves for ∆1 are also
invariant with respect to varying sampling periods Ts and measure-
ment noises σv if plotted against the target maneuvering index

µCA =

√

N0,CAT 5
s

σ2
v

(20)

for the Constant Acceleration (CA) model

[

x(k +1)
ẋ(k +1)
ẍ(k +1)

]

=





1 Ts
1
2 T 2

s
0 1 Ts
0 0 1





[

x(k)
ẋ(k)
ẍ(k)

]

+wCA(k) , (21)

where

wCA(k) =
∫ Ts

0





1
2 (Ts − t)2

Ts − t
1



uCA(kTs + t)dt (22)
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Figure 3: Relationship between the target maneuvering index µ and
the weighting ratio η

and uCA(t) is again a zero-mean continuous random noise sequence
with power spectral density N0,CA. On the other hand, the curves
for the CA model and those for the CV model clearly do not match.

The CV and CA motion models lead to the following process
noise covariance matrices [3]

QCV =

[ 1
3 T 3

s
1
2 T 2

s
1
2 T 2

s Ts

]

N0,CV (23)

and

QCA =





1
20 T 5

s
1
8 T 4

s
1
6 T 3

s
1
8 T 4

s
1
3 T 3

s
1
2 T 2

s
1
6 T 3

s
1
2 T 2

s Ts



N0,CA . (24)

As expressed by Eq. (4), Q11
CV = 1

3 N0T 3
s and Q11

CA = 1
20 N0T 5

s are
the variances of the predicted position estimate due to the process
noise for the two dynamics models, respectively. Therefore, µ is an
indicator for the ratio between the weight given to the measurement
and that given to the predicted estimate during the track update in
the LKFs, as indicated in Eq. (5) for N = 1.

On the other hand, the accuracy of the prediction in the LKFs
does not only depend on the process noise but also on the state tran-
sition matrix F, as also described in Eq. (4). The exact ratio

η =
P11

LKF,pred

σ2
v

(25)

between the weight given to the measurement and that given to the
predicted position estimate can either be taken from the simulations
or, in the steady-state, it can also be calculated by solving a system
of non-linear equations. The corresponding equations for a KF us-
ing a CV model are given in [3]. Those for the CA model can be
derived accordingly.

The relationship between the target maneuvering index µ and
the weighting ratio η is displayed in Fig. 3 and the resulting curves
for the relative difference ∆1 as a function of η in Fig. 4, where the
bold lines present the analytical predictions. This time the curves
for the CV and the CA model show the same progression. Only
the maximum degradation for the CA model of around 4% is lower
than the 5% for the CV model, as also predicted by the theory. This
can be explained by the same η being reached for a smaller process
noise resulting in a lower correlation between the local estimates.

For small values of η , the theory predicts ∆1 to stay at its max-
imum, whereas the simulations show ∆1 to approach zero. This
significant difference can be explained by the analytical curve pre-
dicting the steady-state behavior, whereas the steady-state is never
reached during the simulations for such low values of η . As de-
picted in Fig. 5, the cross-covariance Σi, j(k|k) in Eq. (13) between
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Figure 5: Time dependency of the normalized cross-covariance be-
tween the local position estimates

the local estimates rises only slowly for low values of η . The lack-
ing cross-covariance renders Eqs. (10, 11) of the DKFsimple quasi
exact, the estimates x̂DKF(k|k) and x̂simple(k|k) identical, and ∆1
zero during the initialization phase.

For small values of η , even the analytical prediction of the per-
formance degradation fails for the CA case. This is due to the
numerical solution of the system of non-linear equations for the
steady-state filter performance reaching its limits in accuracy for
such values of η . Simulations with 10000 measurements indicate
that ∆1 stays at its maximum also in the CA case.

KFs do not only produce state estimates x̂ but also calculate
an accuracy of these estimates in form of the error covariance ma-
trix P. The DKF estimates its accuracy correctly whereas the
DKFsimple, although performing slightly worse, estimates its accu-
racy even higher than that of the DKF. Fig. 6 shows this difference

∆2 =
MSEsimple −MSEestimated

MSEestimated

!
=

P11
true −P11

simple

P11
simple

(26)

between the true and estimated MSE of the DKFsimple as a function
of the weighting ratio η . Again, the bold lines indicate the analyt-
ical prediction. The shape of these curves is very similar to those
in Fig. 4 for the difference between the true MSE of the DKFsimple
and the DKF. The maxima are only higher at 16% and 25%, respec-
tively. It can again be seen how this differences can be predicted
very precisely by Eq. (14).

Note further that in Figs. 4 and 6 the variance in estimating ∆1
and ∆2 becomes bigger for smaller values of η . This increase in
variance is due to the errors of the state estimate of a KF becoming
more correlated in time for such values of η . Thus, the effective

10−3 10−2 10−1 100 101 102 103
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

∆ 2

η

CV (Theory)
CA (Theory)
CV (Simulations)
CA (Simulations)

Figure 6: Relative difference between true and estimated MSE of
DKFsimple as a function of the weighting ratio η (Ts = 0.1s,1s,10s;
σv = 0.1m,1m,10m)

number of samples is reduced on which the average in Eqs. (18)
and (26) is performed.

On the other hand, in Fig. 4 the variance drops down to zero
along with ∆1 while in Fig. 6 for ∆2 it keeps increasing for ever
smaller values of η . This can be explained by x̂DKF(k|k) and
x̂simple(k|k) becoming identical due to the lacking cross-correlation
during the initialization phase for these values of η . Therefore,
MSEsimple and MSEDKF estimated with the help of the Monte
Carlo simulations are exactly the same in calculating ∆1. The self-
assessment of the DKFsimple, as expressed by MSEestimated, is, how-
ever, deterministic and, therefore, only becomes a correct estimate
of estimated MSEsimple but not identical with it in calculating ∆2.

5. CONCLUSIONS

If the communication rate between the LKFs and the FC needs to
be reduced to save bandwidth or processing load, the performance
of the fusion process degrades as the information provided by the
different sensors becomes correlated due to propagating the same
underlying process noise. In this paper the worst case of ignoring
this correlation completely is studied. A simple formula for the
performance degradation is derived and validated by simulations.
Its evaluation is straightforward compared with the solution of the
asymmetric Lyapunov equation for the general case. Furthermore,
it is shown that the ratio η between the weight given to the mea-
surement and that given to the predicted position estimate during
the track update in the LKFs is more meaningful than the target
maneuvering index µ in describing the performance degradation.
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