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ABSTRACT

The number of nonzero coefficients in an FIR filter deter-
mines the number of hardware multipliers that are required
to implement the filter. Projection onto convex sets is shown
to be an effective method to create linear phase FIR filters
with reduced numbers of nonzero coefficients while main-
taining filter specifications. The method can be used as an
original design method or used to enhance the performance
of filters generated by existing design methods.

1. INTRODUCTION

Projection onto convex sets (POCS) has been used in many
signal processing applications including: solving systems
of linear equations, tomography and image restoration. An
advantage of this approach is that it allows a natural way
to insert practical constraints into an optimization problem.
However, the POCS based methods can guarantee only that
the solution lie within the intersection of the specified sets.
It cannot explicitly determine the smallest intersection. The
usual linear phase FIR filter design problem has been for-
mulated for POCS implementation [1]. The design specifies
limits which can be used to define convex sets.

One aspect of FIR filter implementation of interest is
the number of multipliers needed to realize the filter. We
propose a design method that can produce filters that satisfy
specifications while having fewer nonzero coefficients than
those produced by common methods. Due to the complexity
of multiplications, a realized digital filter with fewer multi-
pliers can lead to a significant reduction in both the physical
size and the processing time. The trade-off in such a design
is that the total number of delay elements in the new filter is
larger than the usual designs.

2. BASIC POCS DESIGN

The specifications for a frequency selective filter are usually
given by

passband ω ≤ ωp with ripple ||H(ω)| − 1| ≤ δp

stopband ω ≥ ωs with attentuation |H(ω)| ≤ δs

The convex sets based on these specifications for the fil-
ters, h(n), of length M, are

CM = {h(n) : h(n) = 0, for n < 0, and n > M − 1},
(1)

Cphase = {h(n) : h(n) = h(M−1−n), 0 ≤ n ≤ M−1},
(2)

Cmag = {h(n) : |H(ω)− e−j M−1

2
ω| ≤ δp, ω ≤ ωp }, (3)

where δp is obtained from the passband specification, and

Cmag = {h(n) : |H(ω)| ≤ δs, ω ≥ ωs }, (4)

where δs is obtained from the stopband specification. The
fact that the phase is known makes the definition of the con-
vex constraint sets in the complex domain possible.

The projections onto the convex sets defined above are
easily derived. The POCS solution is obtained by projecting
sequentially onto K convex sets. The iteration is described
by [4, 5]

hk+1 = PK(PK−1(...P1(hk)...)) (5)

where for this problem K = 4. The solution can often be
obtained faster by a parallel projection method [6]. This
method was used to obtain the results shown in this work.
Convergence of the POCS iteration and other details are pre-
sented well in [7].

The implementation of the algorithm requires that the
projections onto the sets defined in the frequency domain
be defined for discrete frequencies. There are many ways
to define such sets. This work used the simple expedient of
a dense set of equally spaced samples. This definition has
some interesting consequences. Each of these frequencies
defines a convex set, a fact which may aid the convergence
of the parallel projection method. A generalization of the
convex sets using discrete frequencies is given by

Cmag,k = {h(n) : |H(ωk) − Hd(ωk)| ≤ δk} (6)

where Hd(ωk) is the desired frequency response and δk is
the bound at frequency ωk. The number of sets need only be



large enough to get reasonable interpolation between sam-
ple points of the DFT during the projection and close ap-
proximation of the passband and stopband limits.

The POCS design method has the advantage of directly
defining the sets which produce a filter that satisfies the
specifications, if such a filter exists. The tolerance for the
filter error is easily determined from the specifications. As
noted from Eq.(6), this can be for general filter shapes. The
Parks-McClellan method (Remez in MATLAB software) pro-
duces the optimum filter of length M (smallest weighted
min/max error)[2],[3]. The major difference in the meth-
ods is that the Remez method can work with a continuum
of frequencies for frequency selective filters. For a general
filter shape, both would require a definition at selected fre-
quencies. For either POCS or Remez, iteration may be nec-
essary to obtain a filter which satisfies the specifications.
However, the Remez exchange algorithm is far more effi-
cient and would be preferable in most cases.

3. DESIGN FOR REDUCING THE NUMBER OF
NONZERO TERMS

In the case of frequency selective filters that are used exten-
sively after design, the design time is not a significant con-
sideration. Iterative methods are common. Design meth-
ods, such as the Parks-McClellan method can produce very
efficient filters. However, they are not designed to imple-
ment constraints. Constraints of interest include number
of nonzero coefficients, maximum value or range of coef-
ficient. The POCS method can implement constraints eas-
ily, as long as the constraint can be formulated as a convex
set. The number of nonzero coefficients does not define a
convex set, i.e., the set of all FIR filters with M nonzero
coefficients is not convex. If the positions of the zero coef-
ficients can be specified, then a convex set can be defined.
The set of FIR filters, h(n), with h(n0) = 0, is convex.

There are several ways to select a set of candidate in-
dices for the set of zero coefficients. For example, one can
start with an FIR design obtained from a common method
and set the terms with magnitude less than some threshold
value to zero. An alternate method would be to select a pat-
tern of zeros for the filter. This is possible for frequency
selective filters with certain passbands.

For frequency selective filters, the zero pattern can be
estimated by considering the impulse response of the ideal
filter. As an example, let us consider the lowpass filter with
passband at ωp = 2πfp, where fp is a normalized fre-
quency, |fp| < 1

2
. The discrete impulse response of the

ideal filter is

h(n) =
sin(2πfpn)

πn
(7)

For fixed precision arithmetic, the values of h(n) that are
nearly zero are those where 2fpn nearly is an integer. For
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Fig. 1. Comparison of Filter Responses using Parks-
McClellan (Remez) and POCS, fp = 1/4

the fp = 1

4
, the impulse response is exactly zero for n even,

n 6= 0. For other values of fp, the indices that are set to
zero may depend upon some threshold. Because of the pe-
riodic nature of the ideal impulse response, the pattern will
be periodic. For impulse responses with exact zeros in the
ideal case, it may be advantageous to set other additional
positions to zero.

Once the zeros of the filter have been designated, the
filter length must be increased. After all, the specifications
cannot be satisfied by the optimal filter with modified co-
efficients. The patterns of zeros must be continued into the
extended filter length.

4. EXAMPLES

We begin with a simple halfband FIR, linear phase filter that
might be used with any subband decomposition. This is the
case mentioned above that fp = 1

4
, where every other coef-

ficient is zero. Realistic specifications require small ripple
in the passband to π

2
and large attenuation in the stopband.

Our method produces a filter with 127 nonzero elements
with the

passband ω ≤ 0.49π with ripple 0.2dB
stopband ω ≥ 0.51π with attenuation 50dB
A filter designed by the Remez algorithm that satisfies

the specifications has 200 elements, none of which are zero.
The filter responses are shown in Figure 1.

A closer examination of the passband and stopband fre-
quencies in Figure 2 illustrates the performance of the POCS
method to satisfy the constraints. Note the significant reduc-
tion of the passband ripple. The passband ripple of the FIR
filter generated by POCS is approximately 0.03 dB. A filter
designed by the Remez algorithm with a modified passband
ripple constraint of 0.03 dB required 258 nonzero elements.
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Fig. 2. Comparison of Passband and Stopband Regions us-
ing Parks-McClellan (Remez) and POCS, fp = 1/4

We can reduce the number of nonzero elements in the
Remez filter at the expense of possibly missing the speci-
fications slightly. To do this, we set elements of the filter
that are near zero to zero, then use POCS to optimize the
remaining elements. Using a threshold of 0.002 of the max-
imum coefficient value, the number of nonzero elements
is reduced to 178. This filter response is compared to the
original Remez in Figure 3. The new filter clearly loses
its equiripple properties. Furthermore, the new filter has a
slightly lower passband frequency. Though the equiripple
properties have been lost, the new filter never exceeds the
stopband specifications.

The case of the halfband filter is one of the best cases,
since it has natural zeros at nearly half of the delay po-
sitions. We consider other cases and find that the POCS
method can yield a reduction in the number of nonzero ele-
ments, but not with same spectacular results as for the half-
band filter. An FIR linear phase filter with a passband fre-
quency of fp = 1

8
was designed for comparison to the Re-

mez algorithm according to the following constraints
passband ω ≤ 0.24π with ripple 0.2dB
stopband ω ≥ 0.26π with attenuation 50dB
The POCS method resulted in a filter with 181 nonzero

coefficients, while the Remez method gave 200. The Remez
filter could be enhanced to 180 nonzero coefficients using
POCS.

An FIR linear phase filter with a passband frequency of
fp = 3

16
was designed for comparison to the Remez algo-

rithm according to the following constraints
passband ω ≤ 0.365π with ripple 0.2dB
stopband ω ≥ 0.385π with attenuation 50dB
The filter designed by the Remez algorithm that satis-

fies the specifications has 200 elements, none of which are
zero. The POCS method generated a filter with 201 ele-
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Fig. 3. Comparison of Passband and Stopband Regions us-
ing Parks-McClellan (Remez) and the POCS Enhanced Re-
mez, fp = 1/4

ments. The 201 elements were not contiguous and represent
a longer filter length than the Remez filter. For this case, the
POCS method does not perform any better than the Remez
algorithm, but it does illustrate that the POCS method can
generate similar filters of the same order. Again we note
that the passband ripple is better for the POCS filter. The
Gibbs phenomena is also evident. The filter responses are
shown in Figure 4. The filter responses in the stopband and
passband are shown in Figure 5. Using POCS to reduce
the number of nonzero coefficients, the enhanced Remez
filter has 176 nonzero terms, while maintaining the specifi-
cations. This comparison is shown in Figure 6. In fact, we
note the same effect of actually improving the passband and
stopband properties, while sacrificing the equiripple charac-
teristics.

5. EXTENSIONS

The example of a filter for subband decomposition is a case
where the method works very well. It will always be possi-
ble to use POCS to reduce the number of nonzero elements
by the method of setting those element that are close to zero
to zero. However, it is not clear how to determine the ad-
vantages from such methods. Another question of interest
is how to use POCS on filters other than the frequency se-
lective type. For example, the design of an equalizing filter,
he(n) for a communication channel, represented by hc(n),
requires the combined system, hc(n) ∗ he(n) to be approx-
imately a delayed delta function, δ(n − n0). This problem
may be addressed with POCS in a similar way using the
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Fig. 4. Comparison of Filter Responses using Parks-
McClellan (Remez) and POCS, fp = 3/16
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Fig. 5. Comparison of Passband and Stopband Regions us-
ing Parks-McClellan (Remez) and POCS, fp = 3/16

frequency domain,

Cmag,k = {h(n) : |Hc(ωk)He(ωk) − e−jn0ωk | ≤ δk},
(8)

where Hc(ωk) and He(ωk) are the Fourier transforms of the
channel and equalization filters, respectively.

6. CONCLUSION

The POCS methods has been shown to be effective in cre-
ating linear phase FIR frequency selective filters with a re-
duced number of nonzero coefficients. The method may be
used directly by starting with a truncated impulse response
of an ideal filter. In addition, the method may be used to re-
duce the number of nonzero coefficients in filters designed
by other methods.
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Fig. 6. Comparison of Passband and Stopband Regions us-
ing Parks-McClellan (Remez) and POCS, fp = 3/16
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