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Abstract

Ultrawideband (UWB) or impulse radio wireless communi-
cation systems are based on the transmission of extremely
narrow pulses, with a duration inferior to a nanosecond. By
design, Transmit-Reference (TR) UWB systems can avoid
channel estimation at the receiver, while different users
can share the same available bandwidth by using different
spreading codes, similar to CDMA systems. This allows the
receiver to separate different users, but, more crucially, to
recover timing information of the transmitted packets and
thus achieve synchronization within a short, burst-like packet
transmission. By recognizing that a shift in time corresponds
to a phase rotation in the frequency domain, a blind synchro-
nization algorithm that takes advantage of the shift invari-
ance structure in the frequency domain is proposed in this
paper, allowing for a fast, high-resolution packet offset esti-
mation.

1. INTRODUCTION

Ultrawideband or impulse radio is currently being proposed
as a high data rate wireless communication system for short
distances. While the potential data rates are extremely high
due to a bandwidth usage of 500 MHz or more, a number of
problems at signal transmission and reception must be ad-
dressed (see [1] for an overview of UWB signal processing and
communications challenges). Much unlike conventional com-
munication systems, impulse radio does not employ a carrier
signal in order to convey the modulated data, but uses a
carrier-less or baseband approach where data is modulated
onto sub-nanosecond pulses. In order to allow coexistence
with deployed narrowband systems such as GSM, GPS, and
WLAN, transmitted data symbols need to be spread below
noise level. Current technology does not allow sampling at
the required giga-sample per second rates, and therefore clas-
sical signal processing techniques for channel estimation can-
not be used without a considerable data rate or complexity
penalty. To avoid channel estimation, the usage of a pulse as
a reference or template to decode subsequent pulses leads to
a simplified receiver, with a maximal decrease of data rate of
50 %, pioneered in early communication and radar systems.
This Transmit-Reference (TR) transceiver scheme proposed
by Hoctor and Tomlinson in [2], captures the energy of the
channel by means of correlation and integration at the analog
stage of the receiver side.

The problem faced in UWB communication systems is
the burst-like nature of transmissions and the sharing of
the spectrum among own-system interferers and narrowband
interferers. In such ad-hoc communication systems, it is
of great importance to estimate the beginning of the data
packet of interest in order to subsequently estimate the data
symbols. We assume that symbols are spread using ampli-
tude codes and time-hopping codes, and are transmitted in
individual data packets that have a random time offset. The
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Figure 1: The structure of the autocorrelation receiver.

proposed combined blind synchronization and detection al-
gorithm will process blocks of received data samples, and
compute a high resolution estimate of the starting point of
the packet based on an efficient matching of the desired user
code. This synchronization scheme allows for fast data ex-
change between users in an ad-hoc UWB network.

In this paper we present the data model for a multiuser
Transmit-Reference Ultrawideband (TR-UWB) system, and
a combined blind synchronization and detection scheme for
TR-UWRB transceivers, taking into account a channel with
a long impulse response. The proposed algorithm processes
a block of received data samples, takes advantage of a shift
invariance structure in the frequency domain, and applies a
MUSIC-like search to estimate the delay of the data packet.

2. ASYNCHRONOUS MULTI-USER DATA
MODEL

2.1 TR-UWB system description

In this paper we consider a TR-UWB system that uses a
stream of extremely short pulses (order of ns) to convey the
information between users [2, 3]. First, we define a ’dou-
blet’ as a pair of pulses separated by a time interval D; cho-
sen from a set of predefined delays: D; € {D1,---,Dn}.
The fixed time interval that contains a doublet is called
a 'frame’. Both pulses propagate through the same chan-
nel. Combining them constructively at the receiver side,
enables the energy smeared by the multipath channel to
be recollected. Several doublets employing the same de-
lay D; form a CDMA kind of chip ¢ = {£1} of dura-
tion T.. One data symbol s, € {£1} comprises several
chips, i.e., & = CjmodN. - S|j/N.), With ¢; € {£1} for
j € {0,1,---,N. — 1}, where N, is the length of the po-
larization (CDMA kind of) code. Within a single chip, the
delay D; and the polarization of the information carrier pulse
¢j = {£1} are kept constant according to the ‘time-hopping’
and polarization code, respectively.

As in [2] we implement the autocorrelation receiver pre-
sented in figure 1 in order to reconstruct the data. The signal
from the antenna output r(¢) is correlated (multiplied) by
delayed versions of itself for all possible delays D1,---, Das.
Subsequently, signals are integrated using a sliding window



of size W = T, and afterwards sampled P times per chip du-
ration T., where P is the oversampling rate. A data model
for the synchronous single symbol, single user case under
the assumption that the channel is shorter than the frame
duration is derived in [3].

An extension to the asynchronous multiple symbol, sin-
gle user case is presented in [4] and is extended below to
the multi-user case. This is not trivial, since next to the
autocorrelation terms of the different users, there are also
crosscorrelation terms, due to the use of the autocorrelation
receiver. However, since different users employ distinct time-
hopping and polarization codes, propagate through different
channels, and arrive at the receiver at random time instants,
we can treat these cross terms as white noise. In this manner,
the algorithm used to synchronize to a single user [4] can be
extended for synchronization of multiple users, as explained
in section 3.

2.2 Analog received data model

Similar to [3] but now for the asynchronous multiple symbol,
multi-user case the output at the mth (m € {1,2,---,M})
integrator for the gth (¢ ={1,2,---,Q}) user becomes
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Henceforth ¢ represents the user index. The pulse p(t) has
a staircase 'tent’ shape due to the integration of multiple
frames per chip. p(t) is of duration 27, height one [3] and
is assumed to be known. All users employ short CDMA
codes. Therefore we define 7(? as the offset of a data packet
with respect to the beginning of the received data block as in
figure 2. Without loss of generality and for simplicity reasons
in the derivation of the data model we assume an integer
packet offset 7(9). In [3] it is shown that even in cases where
the transmit delay DEQ) and the receive delay D' do not
match, some residual useful information remains. This effect
is represented by unknown channel parameters a! o ) and ﬁ
where the first is a scaling and the latter depicts a bias.
JZ.(J‘.I) determines which time interval qu) is used between the

pulses of a doublet within the jth chip. Specifically, JZ,(;?) =1
if delay DEQ) is used for chip j and Ji(f) = 0 otherwise.

2.3 Matrix model

The sequence ng{)(t) is subsequently sampled at rate P/T.

where typically P = 2. The sampled output of the m-th
integrator in the kth symbol period is given by
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where we define N = N P. Stackmg horizontally x ., for all
integrator outputs m=1,---, M in the kth samphng period
produces X,(c [xgq,)c,- «,xMyk], an N x M matrix.

When transmission of multiple data symbols is consid-
ered, inter-symbol interference arises and therefore at most
two data symbols of user ¢ affect a single block of received

data X,(Cq). Stacking chq) and X,(ﬂl vertically yields the

block data model of the received data samples
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We define [A(D];; = ol :M x M and [BW];; = 8.9:M x M

as the matrices that collect all channel scaling- (al(g)) and

bias- (ﬂf;’l)) coefficients, respectively. It can be shown that

A is a symmetric (A = AT) Toeplitz matrix with domi-
nant positive diagonal elements, while B(?) is a rank one ma-
trix ie., B@ =b@1T where b(® and 1 explicitly appear

in (2). The k-th data symbol of user g is represented by s(q).

The block columns qu) of size 2N x M comprise the effects
of the time-hopping and polarization codes and the effect
of the pulse shape p(t). We begin with defining the second
block column Z{? = [ijp Z@T 0;7<T(q)+1)P]
prises the complete version of a known, user specific block
code Z@7T ghifted by an integer delay 7(? where Z(@7T =
Pdiag(c'?)JD. [P];; = p(i — l) — (j = 1)Te:N x N. con-
tains one sampled version of the pulse shape p(t) per column.
Note that inter-chip interference (ICI) of P samples arises as
the effect of the sliding window integration. 0_) P:T(Q)Px M

and Oy _ (@) 41)piV — (7 (@ 4 1)P x M are matrices of all

zero elements. ¢ = [¢!?). -,C%Z_I]T:NC x 1 depicts the
outcome of the polarization (CDMA kind) spreading code.
Furthermore, [J(?];; = Ji(;’) is of size N. x M and has a
single non-zero element per column, which determines what
delay ng) is used for the j-th chip thus, J? determines the
time-hopping scheme of user q.

Now we define Z{? = [Z/(@T (1 (T(q)+1)P] and Z{? =

[Onrp Z"DT])" which contain only part of the user block
code Z(@, Z'DT:(7(0 L 1)P x M and Z"D:N — 7P x M de-
pict the effect of a ‘previous’ and a ‘subsequent’ data symbol,
respectively.

Equation (2) can be written more compact as

T that com-

X(q) , S(Q)
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Here S,(f) contains the effect of three consecutive data
SI(CQ)T _

symbols and the channel coefficient matrix i.e.,
[A(q)sk |A(q)8k+1 |A(q)8k+2]T. Note that A@ = A@T 1p
the proposed data model, the unknowns are the data packet
offsets of all existing users 7(@ | the channel parameters A (9
and b'? and the data symbols s,(;’l).

2.4 Resulting asynchronous multi-user model

Define

X(‘Z) B qu) Xé@) .. Xg:l)
- X(Q) X(Q) X(Q) ’
2 3 n+1

as the stack of received data blocks X,(Cq) collected over n+1
consecutive analysis windows of user q. Now we can ex-
tend the asynchronous single user data model (3) to the case
multiple users are considered. Define X as the matrix that
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Figure 2: The structure of analysis window for the asynchronous TR-UWB scheme.

collects the contribution of all @) users at the receiver side:

s
Q
X = x(@ — G/(l) G/(Q) 1 : 4
> CR R S (4)
g=1 bT
Here S = [S{? ... 8] is the collection of n consecutive

3M x M data blocks defined as in (3). Note that the b(®’s for
all g = 1,---,Q will add up to produce b* = Zqul b@T,
Stacking horizontally n copies of b" we obtain b’ of size
1 xnM.

Note that in the case some users are not active for the
duration of the whole analysis window X, several S;” ma-
trices will be zero and some small changes in the structure
of b will occur. Consequently, a few additional vectors with
low energy may emerge in the the left signal subspace.

3. BLIND PACKET OFFSET ESTIMATION

The goal of the synchronization scheme we propose is to
estimate the packet offset of each user with respect to the
beginning of a received data block Xy, (?:1 X](Cq). We
propose a deterministic scheme that works on the block of
received data X and exploits subspace techniques.

From (4) we observe that G'(? of each user is in the left
signal subspace of X. Additionally, the packet offset 7@

appears as the unknown in each block column ZS‘Z), Zg’")

and Zéq). By combining these two properties we can estimate
the packet delay exploiting the fact that G'(9) is orthogonal
to the left nullspace of X i.e., UgG' @ = 0. In order to
estimate 7(? we minimize

argmin, || Uy G’ ||?=

H
:| Zéq)
0

where u1,; and us,; are both of size N x 1 and depict the first
and the second half of the i-th column of the zero subspace

Uy, respectively. Z{? and Z' are of size [N x M] and
represent the upper and lower half of ZgZ). We define Z{? =
z{ = [z Z{P"]". Note that Z{” contains the known

block code Z? shifted over (9. Restacking (5) similar as
in [5] yields
J1e=

ZSI) qu)

ur;

2
w I
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Here, i sweeps all the vectors from the left null space of X.
By stacking horizontally U; for all possible ¢’s we get the
matrix Uy. Now (6) can be written as:

argmin || Z"Uo ||*= argmin || 289" Uo| - - - [257 7 o ||* ,
(7)
()H

where z,., represents the [-th row of Z(Tq)H and subscript 7
is a real number indicating the time offset of the data packet
and takes any value from the interval 7 € [0, N). In order
to obtain a high resolution packet offset estimate, at this
point we make use of the property that a shift in the time
domain (under a narrowband assumption) corresponds to a
phase rotation in the frequency domain as presented in (8).
Since fast algorithms are developed for the Fourier transform
(e.g., FFT) we obtain a fast, high resolution, low complexity
synchronization scheme. More specifically, we can write

Fz{ = D,Fz9) (8)

where F stands for the discrete Fourier transform matrix,

zl(?o) = Zl(,qT):O and D, = diag([l,...,e 7>"/CM)]) where

diag(-) converts a vector to a diagonal matrix and vice versa.
Note that zl(qo) is known for all € {1,---, M}. We also define

ZZ(Q) = le(?o), Uy := FlUy and ¢ = diag(D,). Applying
these definitions to (8) yields le(?T) = DTZZ(Q) or equivalently
le(?T) = diag(il(""))qST. Using (8), we can rewrite (7) as

argmin, || 2,2 Uo| - -- 237 7 Uo ||°

= argmin, || 2/ F'Fll| - - - |20 " F'Fidy ||?

= argmin, || 2{%"F" D3| - 237 F D1l ||?

= argmin, || 277 DUyl - - - |2V Dt |? 9)

argmin . Zi\% l ¢Ediaglil(il(~”")H)Z/~lo I -
argmin, || ¢ [diag(Z\"")to| - - - |diag(z? " o) |
= argmin, || 4. K ||

where * denotes the complex conjugate. Due to the structure
of ¢, searching for the ¢_ that minimizes the last expres-
sion is equivalent to performing an inverse Fourier trans-
form (IFFT) on the matrix K and searching for the row
of the resulting matrix that has the lowest norm. The in-
dex k of the row with the lowest norm determines the part
of the delay offset that corresponds to an integer multi-
ple, i.e., Tint = k. An additional fine grid MUSIC-kind
search argmin_ || (/)?ierTIC |I* performed around 7, pro-
vides a non-integer delay 7frq. that takes a value in the
interval [—1/2,1/2). The overall delay estimate is thus

%(q) = Tint + 7A—frac-

4. SIMULATIONS

To evaluate the performance of the proposed algorithm a se-
ries of the computer simulations were conducted. The simu-
lation scenario consists of multiple asynchronous users. We
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Figure 3: The percentage of incorrectly estimated packet
offsets of the user of interest.

assume M = 3 delay positions, polarization codes of length
N. = 18 chips, and data packets of N; = 30 data symbols.
We perform 1000 Monte Carlo runs, changing the user code,
data symbols and noise samples in each run. To avoid ex-
tremely time-consuming simulations that would occur when
‘real’ data is generated we take advantage of the assumptions
made in section 2 and generate the data as they appear at
the integrator outputs. Function p(t) is generated as a tri-
angular pulse shape. Note that the sampling of a triangular
pulse shape is the same as the sampling of the ‘tent’ pulse
shape p(t) in the case the oversampling factor P > 1 and
the number of doublets per chip is an integer multiple of
P. The oversampling rate P = 2 is lower than the Nyquist
rate for the triangular shape used, and introduces some alias-
ing due to spectral folding, similar as in [6]. Nevertheless,
the bias introduced in that manner is insignificant. For the
purpose of this simulation, the SNR is defined as the ratio
of the signal power of a single user over the AWGN noise
power both measured at the integrator outputs. (A more ac-
curate but very slow simulation would consider the complete
transmission system where the AWGN noise is present at the
input of the integrators. However, according to [7] the noise
at the output can be considered to be AWGN). The packet
offsets of multiple users are fixed and are randomly chosen
as [tV 73 2O 7] = [14.25T, 3.15T. 9.83T. 11.67T.],
where T. is the chip duration normalized to 7. = 1. We
define the signal to noise ratio as SNR = 1Olog(PS(1)/Pn)

where P& = || (AW JW 6 P)c™ ||2/(MN) is the energy of
a single data symbol of the user of interest i.e., user 1, and
P, = o2 stands for the power of the AWGN. The SNR is
changed in steps of 2dB. All users are assumed to have equal
power at the receiver.

Figure 3 shows the percentage of cases where the packet
offset estimate for user 1 is incorrect. An estimate is con-
sidered to be incorrect if it does not fall into the interval
T—Tc/2 <7 <7+ Tc/2. We observe the algorithm’s per-
formance in the cases different number of users are active
simultaneously. Increasing the number of active users re-
sults in a slight performance drop, because the total number
of vectors in the left nullspace is decreasing and because of
higher multi-user interference.

Figure 4 shows the mean square error of the ’good’ es-
timates of 7 for the user of interest for different numbers
of interfering users. In this figure, we perceive that the re-
duction of the number of vectors in the zero subspace that
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Figure 4: Mean square error of the correctly estimated
packet offset delays.

is used for the delay estimation affects the variance of the
packet offset estimates.

5. CONCLUSION

In this paper we presented the algorithm that provides fast,
low complexity, blind packet synchronization in multiuser
TR-UWB systems. Therefore it can be used for fast ini-
tial code exchange in multiuser asynchronous UWB ad hoc
networks.
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