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ABSTRACT
The need for blindly separating mixtures of source signals arises in
many signal processing applications. The solution to this problem
was found using emerging blind source separation (BSS) techniques
which rely on the knowledge of the number of independent sources
present in the mixture. This paper deals with the case where the
number of sources is unknown and statistical independence may
not apply, but where there is only one signal of interest (SOI) to be
separated. We propose a method for extracting this SOI by exploit-
ing its cyclostationarity through a subspace decomposition of the
observations. This method is first developed for instantaneous mix-
tures and is then extended to the convolutive case in the frequency
domain where it does not suffer from the permutation problem as
does classical BSS. Experiments on electrocardiogram and indus-
trial data are finally performed and illustrate the high performance
of the proposed method.

1. INTRODUCTION

The problem of blindly separating instantaneous or convolutive
mixtures of sources is encountered in many signal processing ap-
plications. Among these, one can cite communications, radar and
sonar systems, biomedical applications, the “cocktail party effect”
and many other fields. The solution to this problem was found
using emerging blind source separation techniques which usually
rely on the assumption of the mutual statistical independence of the
sources present in the mixture. Ways of ensuring the mutual in-
dependence of the recovered sources include exploiting their non-
gaussianity [1], their non-whiteness [2], or their non-stationarity —
and particularly their cyclostationarity [3], [4], [5]. As a matter
of fact, many (quasi-)periodic physical phenomena generate (quasi-
)cyclostationary signals. Examples of these are the electrocardio-
gram (ECG) measuring the electrical activity of the heart and the
vibrations caused by rotating or reciprocating mechanical systems
[6].
However, in many situations, the number of sources is often un-
known and may be greater than the number of sensors. Since classi-
cal BSS needs the information on the number of sources and usually
relies on a greater number of measurement signals, it fails to deal
with such cases. Mutual statistical independence of the sources is
another restrictive condition which might not be respected in some
applications, like those involving mechanical systems.
The purpose of this work is to propose a substitute approach to BSS
in order to extract one cyclostationary source labelled “SOI” (for
signal of interest) drowned by an unknown number of interfering
sources and noise. This subject was addressed in the communica-
tions context for instantaneous mixtures in [7] where the authors
proposed a class of Spectral Self-Coherence Restoral (SCORE) al-
gorithms which take advantage of the fundamental cyclic frequency
of the SOI. We propose a novel approach still exploiting the cy-
clostionarity of the SOI but using a subspace decomposition of the
data. Unlike SCORE, the method decribed in this paper easily al-
lows the use of several cyclic frequencies which yields a more ac-
curate estimation of the SOI, and it requires the determination of
only half the number of unknowns of SCORE. A frequency-domain
extension to the convolutive case is also presented in order to cover

a broad range of applications.
The paper is organized as follows. In section 2, we review the prob-
lem of BSS, its formulation and its limitations. After a brief review
of cyclostationary properties in section 3, a more suitable approach
for mixtures with an unknown number of sources and one cyclosta-
tionary SOI is developed in section 4. An extension to convolutive
mixtures is then described in section 5. Finally, we present experi-
ments carried out on real world signals to illustrate the efficiency of
the approach.

2. BLIND SOURCE SEPARATION AND EXTRACTION

Blind source separation consists of retrieving m unknown sources,
s(t) = (s1(t),s2(t), . . . ,sm(t))T solely from the knowledge of n ob-
servation signals x(t) = (x1(t),x2(t), . . . ,xn(t))T , t ∈ IR. Depending
on the application, the mixture model may be either instantaneous

x(t) = As(t)+n(t) (1)

or convolutive
x(t) = H(t)∗s(t)+n(t), (2)

where ∗ is the convolution product, A and H(t) denote respectively
full rank “scalar” and linear filter matrices modelling the transfers
between sources and sensors and n(t) is an additive noise uncorre-
lated with the sources. A typical condition for the BSS to work well,
is to have n ≥ m, that is more equations than unknowns. Another
simplifying assumption is to consider the noiseless mixture model
(n(t)≡ 0).
However, in many situations, the number of sources m is unknown
and the noise is considerable. We will focus on the problem where
there is only one SOI. In this case, the BSS problem reduces to a
blind signal extraction (BSE) problem. In particular, we are inter-
ested in solving the situation where the mixture contains only one
cyclostationary source at some cyclic frequency a . Then, instead
of using an independence criterion as in classical BSS, one can take
advantage of the cyclostationarity of the SOI.
The next section reviews some basics about cyclostationary signals
before presenting the principles of our BSE approach.

3. CYCLOSTATIONARY SIGNALS AND THEIR SECOND
ORDER DESCRIPTORS

In the following all signals are assumed of finite-power and stochas-
tic. A second-order cyclostationary signal s(t) (CS signal) with
cyclic frequencies a i ∈A is such that its auto-correlation function
is periodic and therefore admits a Fourier series expansion

Rs(t, t ) , IE{s(t)s∗(t− t )}
= å

a i∈A

Ra i
s (t )e j2p a it , (3)

where the so-called cyclic auto-correlation functions Ra i
s (t ) are

non-identically zero over the set A .
Second-order spectral statistics are very useful and will be needed
later. For instance, the auto-spectral correlation is defined by the



double Fourier transform of the auto-correlation function with re-
spect to t and t as

Ss(a , f ) =
∫ ∫

Rs(t, t )e− j2p a te− j2p f t dtdt ,

and becomes upon inserting Eq.(3)

Ss(a , f ) = å
a i∈A

Sa i
s ( f )d (a − a i), (4)

which means that the power of a cyclostationary signal is distributed
along spectral lines parallel to the f -axis and positioned on the
cyclic frequencies a = a i. The spectral quantity Sa i

s ( f ) is known as
the cyclic power spectrum and will turn out very useful for the BSE
method relative to convolutive mixtures derived in section 5. The
BSE method for instantaneous mixtures described hereafter will
only take advantage of the cyclic auto-correlation function.

4. THE SUBLEX METHOD

4.1 Principles — general case

We first consider the noisy mixture described in Eq.(1). As stated
previously, the SOI results from a single CS source with cyclic fre-
quency a — all other sources and the noise are either stationary or
CS with different cyclic frequencies. The cyclic correlation matrix
of the observed mixture is:

Ra
x (t ) ,

〈
IE

{
x(t)xH(t− t )

}
e− j2p a t〉

= A
〈
IE

{
s(t)sH(t− t )

}
e− j2p a t〉AH

= ARa
s (t )AH ,

with 〈(. . .)〉 = lim
T→¥

T−1
∫ T/2

−T/2
(. . .)dt. This is a rank 1 matrix be-

cause Ra
s (t ) has only one non-zero element on its diagonal and

this is true independently of the noise n(t). Therefore, it can be
rewritten as

Ra
x (t ) = Ra

sa (t )aa aH
a ,

where Ra
sa (t ) is the cyclic auto-correlation function at lag t of the

cyclostationary source sa (t), and aa is the corresponding column
of matrix A. Thus the eigenvalue decomposition of Ra

x (t )Ra
x (t )H

will give column aa of A up to a scaling factor but this is not
sufficient to separate the mixture. In order to extract the SOI,
a complementary orthogonal subspace to aa is constructed. Let
b2, . . . ,bn be n− 1 mutually orthogonal and unitary vectors span-
ning an (n− 1)-dimensional vector space B orthogonal to aa .
Then, the signals ri(t) = bH

i x(t) where i = 2, · · · ,n , are n−1 mu-
tually orthogonal references on the interferences and orthogonal to
sa (t). In a matrix form, we have

r(t) = BHx(t), (5)

where r(t) is the (n− 1)-dimensional vector of references on the
interferences. Note that the n× (n−1) matrix B is easily found by
using the QR method which is a fast, stable and numerically effi-
cient implementation of the Gram-Schmidt orthogonalisation.
The contribution of the interfering sources on the sensors denoted
by x̂.sa (t) (i.e. x̂.sa (t) are the observation signals when the cy-
clostationary source sa is switched off) is then estimated by mean
squares:

x̂.sa (t) = Cr(t),

where
C = R0

xr(0)R0
r (0)+,

with

R0
xr(0) =

〈
IE

{
x(t)rH(t)

}〉

R0
r (0) =

〈
IE

{
r(t)rH(t)

}〉
,

and the superscript + denoting the Moore-Penrose pseudoinverse of
a matrix. The SOI contribution x̂/sa (t) (i.e. the observation signals
when only the SOI sa is switched on) is finally extracted from the
sensor signals as:

x̂/sa (t) = x(t)− x̂.sa (t)

=
(
I−CBH)

x(t). (6)

4.2 Assessment in the noiseless case

The proposed approach is designed to replace BSS algorithms in the
noisy case, when there is only one (cyclostationary) SOI. However,
it now remains to prove that it does just as well in the noiseless
case — i.e. it achieves perfect separation of the SOI as BSS will
then do. In order to prove it, let us first assume — without loss of
generality — that the first source in vector s(t) is the SOI sa (t) and
that IE{s(t)s(t)H}= I.
Then, let

A = QΩ =
(

aa
‖aa ‖ B

)
Ω (7)

be the QR decomposition which provided matrix B in Eq.(5),
where W is the n×m upper triangular matrix. Upon inserting
Eq.(7) into Eq.(5), we get r(t) = ( 0 Ω22 )s(t) with Ω22 the

(n−1)×(m−1) block of matrix of W such that Ω=
(

W 11 Ω12
0 Ω22

)
.

This yields after some manipulations C = A

(
0T

Ω+
22

)
, where

Ω+
22 = ΩH

22(Ω22Ω
H
22)

+ is the pseudoinverse of Ω22.
Finally, substituting C in Eq.(6) by the former expression yields:

x̂/sa (t) = As(t)−A

(
0T

Ω+
22

)
BHQΩs(t)

= As(t)−A

(
0 0T

0 I

)
s(t)

= A

(
sa (t)
0

)
,

provided that Ω+
22Ω22 = I, i.e Ω+

22 is the left inverse of Ω22 or
n≥m. Hence in this case and in the noiseless mixture situation, the
error on x/sa (t) is null.

4.3 Practical considerations

4.3.1 Conditioning the empirical cyclic correlation matrix

In real situations, we only have finite-length measurement signals
and thus we deal with empirical statistics. The empirical matrix
R̂a

x (t ) might be of a rank greater than 1 which yields a bad estima-
tion of aa . To overcome this difficulty, the method will be rather
performed on the pre-whitened observations

x̃(t) = Wx(t)
= WAs(t)+Wn(t),

where W = (R̂0
x(0)+)1/2. The algorithm is applied to these

whitened data without changing the principle of the SUBLEX
method, but it now makes R̂a

x̃ (t ) closer to a rank-one matrix.

4.3.2 Joint diagonalisation

In order to make the estimation of aa more accurate (up to a
scaling factor), we may perform the joint diagonalisation of a set of
hermitian matrices R̂a

x̃ (t )R̂a
x̃ (t )H indexed by different values of

a and t .
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Figure 1: Spectral correlation of an abdominal sensor signal com-
puted with a half-sine window of 32 samples and 75% overlap
showing a foetal cyclic frequency at a = 8.8× 10−3 fs. The sig-
nal is pre-whitened and only values above a 5% significance level
are displayed.

5. EXTENSION TO THE CONVOLUTIVE MIXTURES
PROBLEM

Taking Eq.(2), the convolutive mixture model may also be written
in the frequency domain as1

dX( f ) = H( f )dS( f )+dN( f ).

The extended SUBLEX method is then performed using the cyclic
power spectrum Sa

sa ( f ) instead of the cyclic correlation function
Ra

sa (t ). The method is then applied for all frequencies in order
to reconstruct the SOI spectrum. Practically, here again, a pre-
whitening of the observations is performed and a joint diagonalisa-
tion of Ŝa

x̃ ( f )Ŝa
x̃ ( f )H over a countable set A of cyclic frequencies

a is suitable to ensure an accurate estimation of the vector aa ( f ) of
matrix H( f ) corresponding to the SOI. It remains to note that un-
like classical BSS, the frequency-domain SUBLEX does not suffer
from the permutation problem since only one SOI is reconstructed.

6. APPLICATION TO REAL WORLD DATA

6.1 ECG data

The first application illustrates the use of the SUBLEX method in
the instantaneous mixture case. We consider the problem of extract-
ing the foetal electrocardiogram from recordings on the mother’s
skin, a signal which contains important indications about the health
of the foetus. Although classical BSS was successfully applied to
this problem where the number of sources present in the mixture
is known a priori [8], the aim of this experiment is to show the
efficiency of our approach before applying it to convolutive mix-
tures. The data consists of 8 recordings with a sampling frequency
fs = 500Hz and 2500 samples. The method assumes the knowledge
of at least one cyclic frequency a of the SOI. In order to deter-
mine a , we computed the spectral correlation of one of the sensor
signals, as given by Eq.(4). Figure (1) shows a high level of cy-
clostationarity of the mixture at the fundamental cyclic frequency
a = 8.8×10−3 fs and its harmonics. By examining the spectral cor-
relation of a recording coming from an electrod placed on the tho-
rax of the mother (Fig.(2)), the a = 8.8× 10−3 fs cyclic frequency
is not present. This means it can be attributed to the foetal electric
activity. For a better accuracy in the estimation of the aa vector,
we used several harmonics of the cyclic frequency and preformed
a joint diagonalisation as advocated before — Fig.(1) shows that
a good choice is Na = 9 harmonics. We then applied SUBLEX

1dX denotes the spectral increment of Cramér’s decomposition of a
stochastic signal: x(t) =

∫ +¥
−¥ e j2p f t dX( f )
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Figure 2: Spectral correlation of a thoracic sensor signal computed
with a half-sine window of 32 samples and 75% overlap. The signal
is pre-whitened and only values above a 5% significance level are
displayed.
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Figure 3: Extraction of the foetal electrocardiogram from 3 sensor
recordings.

on the first three recordings coming from the abdominal electrodes.
Results are plotted in Fig.(3) showing a very good performance of
the method.

6.2 An industrial application

In a second application, we consider measurements taken on a me-
chanical system consisting of a one stage gearbox with a ratio of
32 : 49, an input shaft speed of fr = 3Hz, and a torque of 60N.m.
The driving shaft is supported by a double-row self-aligning ball
bearing whose characteristics are the following:
• Outer race diameter = 44.85mm
• Inner race diameter = 32.17mm
• Ball diameter Bd = 7.12mm
• Number of balls Nb = 12/row

The objective is to extract the contribution of a fault caused by a
slot on the inner race of the ball bearing. We used a data set of 7
sensor recordings of 100000 points each with a sampling frequency
fs = 16384Hz. The ball-pass frequency on the inner race of an ideal
bearing with a contact angle q and a pitch diameter Pd is given by
the formula

BPFI =
frNb

2

(
1+

Bp

Pd
cos q

)
≈ frNb

2

(
1+

Bp

Pd

)
(8)
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Figure 4: Spectral correlation of a sensor signal computed with a
half-sine window of 256 samples and 75% overlap showing a ball
bearing fault cyclic frequency at a = 1.36× 10−3 fs. The signal
is pre-whitened and only values above a 5% significance level are
displayed.

which gives a BPFI ≈ 22.39 Hz. In order to determine more accu-
rately the cyclic frequency of the damaged ball bearing, we com-
puted the spectral correlation of one of the recordings [6]. Figure
(4) shows high correlation values at the normalised cyclic frequen-
cies a = 6.12× 10−3 fs corresponding to the gear mesh frequency
and a = 1.36× 10−3 fs = 22.28Hz and its harmonics correspond-
ing to the fault which verifies the frequency obtained using Eq.(8).
Next, we used the convolutive frequency-domain version of SUB-
LEX for extracting the fault contribution with a = 1.36× 10−3 fs
and Na = 4. The first column of Fig.(5) shows the sensor signals,
and the second one the corresponding fault contribution signals ob-
tained by the proposed method. A zoom on some cycles is shown
in Fig.(6) which illustrates the impacts due to the slot on the inner
race of the ball bearing.

7. CONCLUSION

In this paper, we proposed a subspace method (SUBLEX) for the
blind extraction of a cyclostationary source mixed with an unknown
number of interfering sources — a typical situation where classical
blind source separation fails. We showed that our approach per-
forms perfect separation of the SOI in the noiseless case provided
that the number of sensors is greater than the number of the sources;
the error in the noisy case is still to be theoretically assessed al-
though it was found very small in simulations. We successfully
applied the method to ECG data to extract the foetal electrocar-
diogram, and its frequency-domain extension to industrial data to
extract the signature of a fault in a complex convolutive mixture.
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