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ABSTRACT 
Convolutive blind source separation and adaptive 
beamforming have similar goals and similar system 
structure. Both attempt to extract selected source signals 
from observed sensor mixtures by a filter array. However, 
time and frequency information are utilized in convolutive 
blind source separation while spatial information of source 
signals or sensor array is used in adaptive beamforming. In 
this paper, we start with a brief introduction of blind source 
separation and adaptive beamforming. Next, we review 
approaches combining spatial information used in 
beamforming with time/frequency processing used in 
convolutive blind source separation. We also present a new 
proposed combination approach and simulation results. 

1. INTRODUCTION 

In many applications, there is a definite need to recover 
signals that have been mixed together e.g. teleconferencing. 
Such a problem has been tackled using Blind Source 
Separation algorithms (utilizing time and frequency domain 
information) and adaptive beamforming (utilizing spatial 
information) from different points of views. In this paper, 
we review both approaches and investigate how to combine 
them for better system performance. 
Independent component analysis (ICA) serves as a major 
statistical tool for solving the Blind Source Separation (BSS) 
problem. Separation is performed using the assumption that 
the source signals are independent with no information 
about the geometry of the auditory scene (such as direction 
of arrival of source signals, microphone array configuration 
etc.). Only time/frequency information of sensor signals are 
utilized in separation algorithms. However, some aspects 
limit further applications of BSS in real-world acoustic 
environments. These include low convergence rate and high 
computational requirements in time domain methods, 
frequency permutation and arbitrary amplitude scaling in 
frequency domain methods and performance degradation in 
heavy reverberant environments. 
On the other hand, a relatively well-established research 
topic – adaptive beamforming for acoustical signals – 
approaches this problem from a spatial point of view. In 
adaptive beamforming, a structured array of sensors is used 
to steer the overall gain pattern of the array sensors to form a 
spatial filter which can extract signal from a specific 
direction and reduce signals from other directions. This 

enhances the receiver’s performance with regards to source 
identifiability, direction tracking and quality of reception. 
Thus, compared with blind source separation, the advantage 
of adaptive beamfoming is that the available spatial 
information about the mixing system and/or source signals 
is utilized. However, blind source separation exploits a 
strong statistical condition -- independence -- between 
source signals, which should be helpful for adaptive 
beamforming. 
Recently, the relationship between blind source separation 
and adaptive beamforming has been investigated in [2][7]
[12] and some interesting results have been obtained. Based 
on these results, some combinations of blind source 
separation and adaptive beamforming have been proposed to 
improve separation results. In this paper, we analyse the 
relationship between blind source separation and adaptive 
beamforming in detail, review current combined approaches 
of blind source separation and beamforming, propose a new 
approach and present its simulation results. 

2. CONVOLUTIVE BLIND SOURCE SEPARATION 

The convolutive BSS model is illustrated in Fig. 1. N  source 
signals { ( )}is k , 1 i N≤ ≤ , pass through an unknown N -
input, M -output linear time-invariant mixing system to yield 
the M  mixed signals { ( )}jx k . All source signals ( )is k  are 
assumed to be statistically independent.  
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Fig. 1 Convolutive BSS model 

 
The j th sensor signal can be represented as 
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where ( )jih l  is the impulse response from source i  to sensor 
j , L defines the order of the FIR filters used to model the 

impulse response. 
The task of the convolutive BSS is to obtain an unmixing 
system such that the outputs of this system 

( ) ( )1( ) [ ]TNk y k y k=y  become mutually independent as 



estimates of the N  source signals. The separation system 
typically consists of a set of FIR filters ( )ijw k  of length Q. 
The i th output of the unmixing system is given as:  
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In the time domain convolutive blind source separation 
algorithm, ICA is applied directly to the convolutive mixture 
model [17][18] resulting in good separation for small 
mixing filters. It is computationally very expensive for long 
FIR filters since it involves the convolution operation. 
The frequency domain convolutive BSS algorithm is very 
popular for dealing with convolutive mixtures since the 
convolutive BSS problem is transformed into instantaneous 
BSS problem at every frequency bin. Any complex-valued 
instantaneous ICA algorithm can then be employed to deal 
with the separation at individual frequency bins. However, 
the permutation and scaling ambiguities are introduced 
independently at every frequency bin. This constitutes a 
major challenge that limits the potential application of 
frequency domain BSS as the components at different 
frequency bin may not come from the same source signal and 
may not have the same scale, creating a major problem in the 
time domain reconstruction of the signals. 

3. ADAPTIVE BEAMFORMING 

Typically, a beamformer [19] linearly combines the spatially 
sampled time series from each sensor to obtain a scalar 
output time series of a signal from a given direction, in the 
same manner as an FIR filter linearly combines temporally 
sampled data to select a signal in a given frequency range. 
The basic beamformer structure is given in Fig. 2. 
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Fig. 2: Beamformer with senor outputs convolved by FIR filters 

 
The filter coefficients are optimized to produce a spatial 
pattern with a dominant response in the direction of interest 
while the response for the directions of interfering signals is 
minimized. In multipath or reverberant environments, the 
selected direction may also include signals that originate 
from different sources that end up arriving in the same 
direction. 

4. CURRENT APPROACHES FOR COMBINING 
BEAMFOMING AND BSS 

It is clear that convolutive BSS and adaptive beamforming 
solve the same signal separation problem from different 
points of view using different information. To achieve better 
separation, combined BSS/beamforming approaches have 
been proposed along three general directions to be reviewed 
here. 
 

4.1 Incorporation of geometrical information into 
convolutive blind source separation algorithm 
In this first approach, geometric information, such as location 
of source (or direction of arrival) and sensor configuration 
used in beamforming to align the beam pattern to specific 
direction, is incorporated into the convolutive BSS 
algorithms. 
In [12], the geometric information used in adaptive 
beamforming is incorporated in frequency domain 
convolutive BSS algorithm as linear constraints or as the 
initial adaptation condition. These additional constraints 
inevitably reduce existing degrees of freedom so as to resolve 
some of the ambiguities in convolutive BSS algorithm. It 
should be noted that an accurate steering direction is assumed 
to be known in [12]. This assumption is not always true. A 
new geometrically constrained BSS algorithm is proposed in 
[8] without this assumption. This algorithm is based on the 
FastICA algorithm [5] and roughly-estimated geometric 
information. The performance of this algorithm is not 
sensitive to the precision of the estimated geometrical 
constraint resulting in robustness of the algorithm in 
reverberant acoustical environment. 
Besides incorporating geometrical information into the 
frequency domain convolutive BSS, a new time domain 
convolutive BSS algorithm is proposed in [1] by utilizing 
geometric information. In this algorithm, a null beamformer 
is constructed based on the available geometric information 
and its parameters are exploited as initial condition into the 
time domain convolutive BSS algorithm to speed its 
convergence rate and improve separation performance since 
the convergence and result of separation of gradient-based 
algorithms are influenced significantly by the initial 
conditions.  
 
4.2 Formulation of convolutive BSS as multiple sets of 
adaptive beamforming to resolve ambiguities in BSS 
A convolutive blind source separation system can be viewed 
as multiple sets of adaptive beamforming, which means the 
separation filter array for every output can be viewed as a 
beamformer. In [9], this idea is used to deal with frequency 
permutation and the arbitrary scaling problem in frequency 
domain convolutive BSS. After obtaining the unmixing 
matrix for every frequency bin, its corresponding directivity 
pattern can be calculated by beamforming approach. The null 
direction for every output at each frequency bin can be 
obtained from the directivity pattern. By swapping the output 
order of every frequency bin to make the output signals from 
frequency components consistent with the null direction, the 
frequency permutation problem can be resolved.  
The directivity patterns used in [9] have grating lobes at high 
frequencies, which affect the accuracy of estimated direction 
of sources. In [6], the directivity patterns at different 
frequencies are investigated and a new approach is proposed 
by estimating the source location from the lower band of 
frequencies where no grating lobes appear. The frequency 
permutation is aligned by looking for nulls in the 
neighborhood of the estimated direction of arrival (DOA). 
The directivity patterns obtained from unmixing matrix can 
also be used to improve the convergence speed of 



convolutive BSS algorithm. In [15], independent component 
analysis and beamforming are combined to deal with the 
slow convergence problem. First, ICA is used to perform 
blind source separation at every frequency bin and the 
unmixing matrix can be obtained at each frequency bin. 
Accordingly, the directivity pattern at each frequency bin can 
be calculated from its unmixing matrix as in [9]. DOA of 
source signals are estimated from the directions of nulls at all 
frequency bins. During the adaptation process, at each 
frequency bin, the null in the directivity pattern is compared 
with the estimated DOA of source signals. If it is steering to 
the proper direction, the unmixing matrix from ICA 
algorithm is used. If not, the null-steering beamformer 
constructed from the estimated DOA information is used to 
substitute for the unmixing matrix. By doing so, the 
unmixing matrix can be recovered from local minimum in 
the optimization procedure to improve its convergence speed. 
The approach proposed in [9] requires plotting the directivity 
pattern for every frequency bin; something that is very time 
consuming. Moreover, for situations with more than two 
sources, it is difficult to estimate DOA of source signals from 
null directions since the directivity pattern becomes too 
complicated. In [13], a new method dealing with the 
permutation problem in situations with more than two 
sources is proposed. In this approach, a closed-form formula 
is proposed to directly calculate direction of sources from the 
unmixing matrix at each frequency bin. By sorting the 
obtained directions of sources, a permutation matrix can be 
constructed to resolve the frequency permutation problem. 
In [14], a new robust and precise method for solving 
frequency permutation in frequency domain convolutive BSS 
is proposed by integrating direction of arrival approach and 
interfrequency correlation approach [11]. Interfrequency 
correlation approach for frequency permutation alignment is 
based on the idea that signal envelops have high correlations 
at neighboring frequencies if separated signals are from the 
same source signal. However, the correlation approach is not 
robust since a misalignment at a given frequency can cause 
misalignments in subsequent frequencies. In this new 
method, for the frequencies where the direction of arrival can 
be estimated accurately, direction of arrival approach is used 
to align the frequency permutation, for other frequencies, 
interfrequency correlation approach is used to do the 
alignment based on neighbouring correlation.  
 
4.3 Utilization of the beamforming structure and the ICA 
cost function 
In [4], a new convolutive blind source separation algorithm is 
proposed based on a beamforming structure and the ICA cost 
function. In this method, the unmixing system is constructed 
as multiple sets of beamformers. Besides making null-
steering towards interfering signal as in the conventional 
beamforming, the null-directions are also adjusted to make 
output signals as independent as possible. This means that the 
multiple sets of beamformers are adjusted jointly to obtain 
mutually independent outputs. Thus, the independence 
criterion, which includes higher-order statistics, and 
geometric information are both exploited in this algorithm. 

5. A NEW COMBINATION OF CONVOLUTIVE BSS 
AND ADAPTIVE BEAMFORMING 

The proposed system attempts to mimic the performance of 
human ears in a cocktail party environment. First, adaptive 
beamforming is used to isolate signals from specific 
directions, and then blind source separation is used to 
separate signal from different sources aiming in that 
direction. The proposed two-stage separation system is 
shown in Fig.3.  
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Fig.3 Proposed 2-stage beamforming BSS system of speech signals 

 
The sound source localization and separation system 
proposed in [3] is implemented here as the adaptive 
beamforming stage to zoom in on the direction of selected 
speaker. First the range and direction of the speaker are 
estimated by an extended spatial spectrum estimator, MUSIC 
[16] for each source. Then the minimum variance 
beamformer is constructed based on the estimated location 
information.  
In convolutive blind source separation stage, the update 
equation for the separating system W  is the algorithm used 
in [10] at frequency domain. 
The two-stage setup mimicking the human hearing system 
allows the advantages of both adaptive beamforming and 
convolutive BSS to be implemented entirely with the 
freedom to select the best algorithm for each stage. 

6. EXPERIMENTAL RESULTS 

A microphone array with 8 sensors is used to receive 2 
source speech signals sampled at 8kHz. Since the end users 
are humans, we use PESQ score [20] to measure the quality 
of the recovered speech signal as perceived by a human. The 
PESQ score is rated as a value between –0.5 to 4.5. The 
higher the score, the better the speech quality. 
Real room impulse responses with 4096 taps are used to 
generate the 8 mixed signals 1 2 8, , ,x x x .  In the adaptive 
beamforming stage, the two speaker locations are estimated 
from the mixtures and two beamformers are constructed to 
get signals 1y  and 2y  from these two specific locations. In 
the convolutive BSS stage, the coefficients of the unmixing 
system are adaptively adjusted to further cancel the 
remaining effects of cross-talk and get the estimated source 
signals 1z  and 2z . 
Tables 1, 2 and 3 provide the PESQ scores of the mixed 
signals 1 2 8, , ,x x x ; signals 1y  and 2y  from beamforming 
stage; signals 1z  and 2z  from BSS stage compared to the 
original signal, respectively. 
 



x1 x2 x3 x4 x5 x6 x7 x8

s1 1.831 1.811 1.798 1.746 1.600 1.663 1.559 1.739

s2 1.462 1.260 1.306 1.336 1.342 1.559 1.662 1.488

s1 2.082 2.045 2.134 2.102 1.952 1.932 1.860 2.072

s2 1.707 1.602 1.653 1.720 1.717 1.852 1.898 1.763

s1 1.842 1.854 1.826 1.742 1.621 1.668 1.528 1.781

s2 1.537 1.428 1.498 1.565 1.616 1.738 1.802 1.529

PESQ

female/f
emale

male/  
male

female/
male

Table 1:Average PESQ scores for mixed speech signals ix   

 

y1 y2 y1 y2 y1 y2
s1 2.343 0.859 2.490 1.478 2.319 0.809
s2 0.665 2.154 1.091 2.298 0.752 2.292

PESQ
female/female male/male female/male

 
Table 2: Average PESQ scores for outputs 1y  and 2y   

 

z1 z2 z1 z2 z1 z2
s1 2.411 0.680 2.672 1.039 2.460 0.550
s2 0.481 2.244 0.719 2.471 0.590 2.410

PESQ
female/female male/male female/male

 
Table 3: PESQ scores for outputs 1z  and 2z   

 
Since most of the reverberation effects have already been 
removed by the adaptive beamforming stage, we used very 
short FIR filters (32 taps) to complete the speech separation 
in the selected direction. Similar separation quality cannot be 
obtained even by filters with 1024 taps when there is no 
adaptive beamforming stage as pre-processor. Thus, the 
computation complexity for BSS is greatly reduced.  
We can see that the combined beamforming and convolutive 
BSS algorithm further improves the quality of separation. 
This was also confirmed by informal listening experiments. 

7. CONCLUSIONS 

In this paper, we review approaches combining spatial 
information used in beamforming with time/frequency 
processing used in convolutive blind source separation 
aiming for better separation performance given the increased  
information used. We also present a new proposed 
combination method which mimics the way our ears separate 
audio signal in acoustic environments. Simulation results 
confirm our expectations and show that our system works 
pretty well in real room environments. 
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