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ABSTRACT
This paper presents a Bayesian approach for blind source
recovery based on Rao-Blackwellised particle filtering tech-
niques. The proposed state space model uses a time-varying
autoregressive (TVAR) model for the sources, and a time-
varying finite impulse response (FIR) model for the chan-
nel. The observed signals of the SISO, SIMO (Single In-
put, Multiple Output) or MIMO system are the convolution
of the sources with the channels measured in additive noise.
Sequential Monte Carlo (SMC) methods are used to imple-
ment a Bayesian approach to the nonlinear state estimation
problem. The Rao-Blackwellisation technique is applied to
directly recover the sources by marginalizing the AR and FIR
coefficients from the joint posterior distribution. Simulation
results are given to verify the performance of the proposed
method.

1. INTRODUCTION

In many applications in blind system identification, the
source is often the desired signal. This is the case, e.g., in
wireless communications systems and in recovering speech
signals which have been recorded in reverberant enclosures.
A common approach for source recovery is to first identify
the channel, and then obtain an estimate of the source by ap-
plying the inverse of the channel estimate to the observed sig-
nal. This method is not feasible in cases for which the chan-
nel is ill-conditioned, rendering the channel inverse prone to
large error. This is particularly true for acoustic reverbera-
tive channels when the long tails in the channel impulse re-
sponse lead to ill-conditioning. This paper proposes a blind
Bayesian approach that directly recovers the source signal,
and therefore avoids the channel inversion problem.

A Bayesian filtering algorithm is developed for the non-
linear state space model using sequential Monte Carlo (SMC)
methods, otherwise known as particle filtering. The use of
SMC methods for nonlinear/non-Gaussian problems in sig-
nal processing was prompted by the introduction of the re-
sampling step in a sequential framework [1]. Recent ad-
vances in computational power has led to applications to tar-
get tracking [1], speech processing [2] and wireless commu-
nications [3] problems. A particle filtering approach can re-
sult in significant computational complexity, however, they
lend themselves well to a parallel implementation.

2. STATE SPACE MODEL

The state space model under consideration is shown graphi-
cally in Figure 1. The nth source sk[n] is assumed to evolve
according to the following P-order time-varying autoregres-
sive (TVAR) model:

sk[n] = aT
k,nsP,k−1,n +vk−1[n]. (1)
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Figure 1: Graphical representation of state space model

The source vector sP,k−1,n ∈ R
P×1 is the concatenation of the

most recent P samples at time k− 1 for the nth source, and
the vector ak,n ∈R

P×1 contains the corresponding AR coeffi-
cients. The source noise vk−1[n] ∈ R is assumed to be white
Gaussian distributed with mean zero and unknown variance
σ2

v,n. The source noise variances are assumed to be indepen-
dent between sources. The following two matrix representa-
tions for the N sources are used:

sk = AksP,k−1 +vk−1 (2)
= Sk−1ak +vk−1. (3)

The quantities Sk−1 and sP,k−1 are formed from the source
samples in the set of sP,k−1,n, n = 1,2, . . . ,N, and Ak, ak are
formed from the AR coefficients contained in the set of ak,n.
Appropriate definitions are used in order to satisfy equation
(1) for n = 1,2, . . . ,N.

The time-varying AR coefficient vector ak is itself as-
sumed to evolve according to a first-order AR model as fol-
lows:

ak = aaak−1 +va,k−1, (4)

with 0 < aa < 1 assumed known and the noise vector va,k−1
Gaussian with mean zero and known covariance Σa. In ad-
dition, the AR coefficients are constrained to be stable with
all poles inside the unit circle.

The measurement equation for the jth sensor is assumed
to evolve according to the convolution of the sources with
time-varying FIR channels in the presence of additive noise
as follows:

yk[ j] = hT
k, jsL,k +wk[ j]. (5)

The source vector sL,k ∈ R
NL×1 is the concatenation of the

most recent L source vectors sk−ℓ, ℓ = 0,1, . . . ,L− 1 at time
k, and the channel vector hk, j ∈ R

NL×1 is formed from the



N FIR filters hk, j,n of length L from the nth source to the
jth sensor. The measurement noise wk[ j] ∈ R is assumed to
be white Gaussian distributed with mean zero and unknown
variance σ2

w, j. The measurement noise variances are assumed
to be independent between sensors. The matrix representa-
tions used for the measurements at the J sensors are:

yk = HksL,k +wk (6)
= Tkhk +wk. (7)

The source matrix Tk is formed from sL,k, and Hk,hk are
formed from the FIR coefficients contained in the set of hk, j
in order to satisfy (5) for j = 1,2, . . . ,J.

The time-varying FIR coefficient vector hk is assumed to
evolve according to a first-order AR model as follows:

hk = ahhk−1 +vh,k−1, (8)

with 0 < ah < 1 assumed known and the noise vector vh,k−1
Gaussian with mean zero and known covariance Σh.

3. SEQUENTIAL MONTE CARLO METHODS

A Bayesian approach to sequential state estimation is to re-
cursively compute the posterior distribution of the states x1:k
given the measurements y1:k. When the state space model
is linear-Gaussian, the Kalman filter provides the optimal
Bayesian solution in closed-form. The given state space
model is nonlinear since both the source and channel are
unknown, so that SMC methods [4] are required. SMC
methods numerically approximate the posterior distribution
using a set of particles xi

k and importance weights wi
k for

i = 1,2, . . . ,Np:

p(x1:k|y1:k) ≈
Np

∑
i=1

wi
kδ (x1:k −xi

1:k). (9)

SMC methods are implemented using the sequential impor-
tance sampling (SIS) technique [5], which specifies a recur-
sion for the importance weights:

wi
k ∝ wi

k−1
p(yk|x

i
k)p(xi

k|x
i
k−1)

q(xi
k|x

i
1:k−1,y1:k)

. (10)

The derivation assumes the state xk is first-order Markov and
the measurement yk does not depend on past states x1:k−1.
The importance weights are normalized such that ∑i wi

k = 1.
In practice, SIS algorithms suffer from the problem of

importance weight degeneracy, in which after a few iterations
of the recursion only one particle has a significant normalized
importance weighting. The resampling step introduced in [1]
reduces the weight degeneracy by duplicating particles with
large weights and removing particles with small weights after
the weight update in (10). The approximate effective sample
size N̂eff [6] is used as a measure of degeneracy, with resam-
pling occurring whenever it falls below a fixed threshold.

An undesired consequence of resampling is that parti-
cles with high importance weights can be selected numerous
times. One method of reintroducing statistical diversity af-
ter the resampling procedure is the use of a Markov Chain
Monte Carlo (MCMC) step [4].

4. RAO-BLACKWELLISED PARTICLE FILTERING

The Rao-Blackwellisation (RB) strategy [5] is applied to
exploit the analytical structure in the proposed state space
model. The RB technique marginalizes out conditionally
linear-Gaussian state variables from the joint posterior dis-
tribution in order to reduce the state dimension for the par-
ticle filtering algorithm. This strategy can be shown to re-
duce the variance of the state estimates obtained using the
particle filter [5]. This is due to the fact that the numerical
particle filter is now only used to estimate the truly nonlinear
states, while the remaining conditional linear-Gaussian states
are estimated using the closed-form Kalman filter [7].

It can be seen from the proposed state space model that
conditional on the sources s1:k (which form Tk) and the mea-
surement noise covariance Σw, equations (7)-(8) for the FIR
coefficients hk form a linear-Gaussian subsystem. Similarly,
the pair of equations (3)-(4) for the AR coefficients ak condi-
tioned on the sources (which form Sk−1) and the source noise
covariance Σv also form a linear-Gaussian subsystem. The
joint posterior distribution for the sources, FIR and AR coef-
ficients is factorized using Bayes’ rule to exploit this struc-
ture:

p(s1:k,a1:k,h1:k|y1:k) = p(s1:k|y1:k)

p(a1:k|s1:k,y1:k)p(h1:k|s1:k,y1:k)
(11)

The dependence on the noise variances Σv and Σw are
not shown explicitly since maximum a posteriori (MAP) esti-
mates can be developed separately assuming non-informative
inverse Gamma variance priors. The filtered distributions
p(ak|s1:k,y1:k) and p(hk|s1:k,y1:k) are computed recursively
in parallel for the decoupled conditionally linear-Gaussian
problems using the standard Kalman filter:

p(ak|s
i
1:k,y1:k) = N (âi

k|k,Φ
i
a,k|k), (12)

p(hk|s
i
1:k,y1:k) = N (ĥi

k|k,Φ
i
h,k|k). (13)

The quantities âk|k,ĥk|k are the filtered means and
Φa,k|k,Φh,k|k are the filtered covariances from the Kalman re-
cursions for the AR and FIR coefficients.

The marginalized posterior distribution p(s1:k|y1:k) is ob-
tained using the Rao-Blackwellisation strategy for marginal-
izing out the conditionally linear-Gaussian AR and FIR coef-
ficients. The resulting nonlinear estimation problem for the
sources sk is implemented using the particle filter. The devel-
opment of the SIS method assumes the state transition model
for sk is first-order Markov and the measurement model does
not explicitly depend on past states. The state equation (2)
and the measurement equation (6) do not satisfy this require-
ment in general since they are dependent on P and L source
samples, respectively. To satisfy the requirements of an SIS
implementation, the new state variable sM,k ∈ R

MN×1 is in-
troduced for M = max(P,L). The reformulated state transi-
tion and measurement equations are then:

sM,k = ÃksM,k−1 + ṽk−1, (14)

yk = H̃ksM,k +wk, (15)

where, using 0a,b to denote a matrix of zeros of dimension



a×b if a,b > 0 and empty otherwise,

Ãk =

[ [
0(M−1)N,N ,I(M−1)N

]
[
0N,(L−P)N ,Ak

]
]
, (16)

ṽk−1 = [01,(M−1)N ,vT
k−1]

T, (17)

H̃k = [0J,(P−L)N ,Hk]. (18)

Using this formulation in terms of sM,k, we now develop
the importance function and weight update used in the parti-
cle filter for estimation of the sources. An approximation to
the optimal importance function is used to generate the parti-
cles. The optimal importance function is the function which
minimizes the variance of the importance weights [5]:

q(sM,k|sM,1:k−1,y1:k) ∝ p(yk|sM,k)p(sM,k|sM,k−1). (19)

From the form of (14), only the quantity sk of sM,k is a ran-
dom variable, while the remaining blocks are deterministic
shifts of the blocks from the previous state sM,k−1. Thus, it is
only required to consider generating particles for the current
source vector sk from an importance density of the form:

q(sk|sM,1:k−1,y1:k) ∝ p(yk|sM,k)p(sk|sM,k−1), (20)

where p(yk|sM,k) is the marginalized likelihood and
p(sk|sM,k−1) is the marginalized prior. These distributions
are determined by marginalizing over the FIR and AR coef-
ficients, and are found to be [7]:

p(sk|sM,k−1) = N (Sk−1âk|k−1,Rk), (21)

p(yk|sM,k) = N (Tkĥk|k−1,Qk), (22)

where

Rk = Sk−1Φa,k|k−1S
T
k−1 +Σv, (23)

Qk = TkΦh,k|k−1T
T
k +Σw, (24)

and âk|k−1,ĥk|k−1 are the predicted means and
Φa,k|k−1,Φh,k|k−1 are the predicted covariances from
the Kalman filter recursions. Even though the optimal
importance function for sk in (20) is the product of the two
Gaussian distributions (21),(22), it is not Gaussian itself
since the covariance term Qk has a dependence on the
variable of interest sk (through Tk). In order to derive a
Gaussian importance function that has the necessary feature
of being easy to sample from, the state-dependent covariance
Qk is approximated by Q̂k in which sk is replaced with its
predicted value from the transition prior:

ŝk|k−1 = Sk−1âk|k−1 (25)

To factorize the two distributions into an equivalent
Gaussian distribution for sk, the variable sk is isolated from
the matrix Tk in the mean of (22) using the equivalent forms
of the measurement equation in (6) and (7):

Tkĥk|k−1 =
L−1

∑
ℓ=0

Ĥk|k−1,ℓsk−ℓ

= Ĥk|k−1,0sk + ŷk|k−1

(26)

where the predicted matrices of FIR coefficients at lag ℓ from
the current time Ĥk|k−1,ℓ are formed from ĥk|k−1, and the
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Figure 2: Rao-Blackwellised Particle Filtering Algorithm
Structure

predicted measurement ŷk|k−1 is defined as the summation
excluding Ĥk|k−1,0sk. The resulting importance function is
then Gaussian with mean µo and covariance Σo given by:

µo = ŝk|k−1 +Wk(yk − Ĥk|k−1,0ŝk|k−1 − ŷk|k−1),

Σo = Rk −WkĤk|k−1,0Rk,

which is in the form of a Kalman update on the predicted
particles with gain given by:

Wk = RkĤ
T
k|k−1,0[Ĥk|k−1,0RkĤ

T
k|k−1,0 + Q̂k]

−1. (27)

The corresponding weight update from (10) is then:

wi
k ∝ wi

k−1

p(yk|s
i
M,k)

p̂(yk|s
i
M,k)

p̂(yk|s
i
M,k−1), (28)

where
p̂(yk|sM,k) = N (Tkĥk|k−1,Q̂k) (29)

The structure of the algorithm is shown in Figure 2.

5. SIMULATION RESULTS

A SIMO system with N = 1 source and J = 2 sensors was run
over time steps 1 to K = 500 for Nt = 50 Monte Carlo trials.
The initial P = 4 order AR coefficient vector a0 was gener-
ated from a low-pass Butterworth filter with normalized cut-
off frequency wn = 0.25. The time-varying state ak was then
generated from the AR model in (4) using aa = 0.9999 and
Σa = 0.001IP. The initial L = 6 order FIR channel vectors
h0, j,n were produced from independent draws from a zero-
mean Gaussian distribution with exponentially decaying co-
variance matrix using W = 0.15:

Σh,0 = diag
(
[e−

L−1
WL ,e−

L−2
WL , . . . ,e−

0
WL ]
)

. (30)

The time-varying hk was then generated from (8) using
ah = 0.9999 and Σh = (1−a2

h)Σh,0. The noise variance pa-
rameters were σ2

v = 0.01, σ2
w = 0.005. The average signal-

to-noise (SNR) ratio computed numerically over the Monte
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Figure 3: Source estimation for SIMO system

Carlo runs was 17.3 dB. The number of particles was Np =
50.

The performance is measured using the mean square er-
ror (MSE) averaged over the time steps and Monte Carlo
runs:

MSE = 10log10

(
1
Nt

Nt

∑
t=1

(
1
K

K

∑
k=1

‖st
k − ŝt

k‖
2
2

N

))
, (31)

where st
k is the true source from the tth Monte Carlo trial, ŝt

k
is the minimum mean square error (MMSE) estimate, and N
is the dimension of the state sk. Performance measures for
the MMSE estimates of hk, ak, σ2

v , and σ2
w also follow the

form of (31). The MSE values are shown in Table 1.

Table 1: MSE simulation results
Variable sk hk ak σ2

v σ2
w

MSE -23.08 -15.83 -12.09 -46.31 -72.40

Figure 3 compares the true source with the MMSE es-
timate from one trial. Figure 4 illustrates an example of a
MIMO system with 2 sources and 4 sensors, using the same
parameters from the SIMO case. The source MSE was -22.11
dB.

6. CONCLUSIONS

The paper presents a Bayesian approach to directly recover
sources which follow a TVAR model mixed by FIR channels
and measured with additive noise. The blind estimation of
the nonlinear model is implemented using sequential Monte
Carlo methods. The performance of the particle filter is im-
proved by exploiting the conditionally linear-Gaussian struc-
ture in the model using the Rao-Blackwellisation procedure,
and through the development of a Gaussian approximation to
the optimal importance function. Simulation results demon-
strate the effectiveness of the method.

Acknowledgment

The first two authors thank Dr. Mark Morelande, The Uni-
versity of Melbourne, and Derek Yee, McMaster University,
for helpful suggestions and insight.

0 50 100 150
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time Index (k)

S
ou

rc
e 

#1

Source estimation

0 50 100 150
−1

−0.5

0

0.5

1

Time Index (k)

S
ou

rc
e 

#2

True Source
MMSE Estimate

True Source
MMSE Estimate

Figure 4: Source estimation for MIMO system
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