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ABSTRACT

A novel technique for robust adaptive beamforming (ABF) is pro-
posed. The technique, referred to as Domain-Weighted PCA (DW-
PCA), is founded on a basic paradigm shift from one of noise can-
cellation to one of signal separation. It uses the singular value de-
composition (SVD) to perform second order blind signal separation
after applying a simple transformation to the data. The transforma-
tion is designed to exploit prior knowledge in the form of one or
more estimated steering vectors. The method is quite distinct from
existing algorithms for robust ABF and can offer improved per-
formance in many cases. The results of computer simulations, which
demonstrate this point, are presented.

1. INTRODUCTION

Sensor array signal processing is widely used in many fields, includ-
ing communications, radar, seismology and sonar. Fixed beamform-
ers were developed to use simple prior information, usually the
response of the array to the signal of interest (SOI). Unfortunately
these are highly susceptible to interfering signals. This is not the
case however for ABF techniques. If SOI-free training data are
available, powerful ABF techniques have been proposed. However,
in many applications SOI-free data are not obtainable. In these situa-
tions, the SOI is present in all the data; as a result ABF techniques
become highly susceptible to errors in underlying assumptions made
about the environment, the sources or the array. The performance of
ABEF techniques is shown to degrade significantly when the sample
size is small or when the response of the array to the SOI is even
slightly wrong. This means that robust ABF techniques are required.
The basic ABF technique is the look direction constrained least
squares adaptive technique, as used in the Minimum Variance Dis-
tortionless Response (MVDR) beamformer [1] in which the sample
matrix inversion (SMI) algorithm can be exploited. Techniques
developed to be more robust include: adding diagonal loading to the
sample covariance matrix [2]; penalty function approaches [3]; a
worst-case optimisation approach [4] and many others, see [4] and
references therein. Many of these techniques are robust against cer-
tain types of error, but not robust against others — a good summary
is provided in [4].

This paper proposes a novel technique for robust adaptive beam-
forming using Principal Component Analysis (PCA). It is based
upon two observations. Firstly, adaptive beamforming is a special
case of signal separation; we are trying to separate one SOI from
other interfering signals. Various blind signal separation (BSS) algo-
rithms can do this with minimal underlying assumptions — but these
do not emphasise the SOI over the other signals, nor in their original
formulation can they utilise prior information. The initial stage of
many of these BSS algorithms uses PCA. We observe that if the
total power of the SOI across all the channels is significantly differ-
ent from that of the interferers, then the PCA carries out most of the
separation. Based on these observations, we propose a technique
that uses information about the SOI and the sensor array to modify

the total power of the SOI so it becomes distinct from that of the
interferers; PCA is then applied to extract the SOIL.

Our technique uses both data and prior information in the data
analysis. The prior information is used in a ‘soft’ manner, which
means the technique is more robust to errors in the information than
the MVDR beamformer and compares well with other robust ABF
techniques. However by using the prior information, the technique
produces better results than purely data based techniques, such as
standard PCA and BSS techniques, particularly when statistical
estimates of quantities, e.g. the covariance matrix, are unreliable.
We call our technique Domain-Weighted PCA because it applies
weighting dependent upon the prior information followed by carry-
ing out standard PCA.

The paper is organised as follows, section 2 describes the back-
ground and introduces the notation to be used. In section 3 we dem-
onstrate that in a mixture of several signals the powerful signals are
removed from the weaker signals by the PCA, but that the reverse is
not true. The DW-PCA technique is introduced in section 4, and
some results from using it are presented in section 5. Section 6 con-
tains the conclusions.

2. BACKGROUND AND NOTATION

The classical instantaneous, stationary, and linear mixing model that
is used throughout this paper is that the received data matrix X can
be modelled as follows:

X=CP S+N

nxT  nxm mxmmxT nxT
The T columns of X, S, and N contain snapshots of the received
data, original signals and sensor noise respectively, indexed by time,
so for example X = [x(l) x(2) x(T)] Each snapshot is a

complex vector, X(t) = [Xl 1) x,(1) Xp (t)]T where []T

denotes the vector transpose. It is assumed that the vector quantities
n(t),s(t) and x(t) are all zero mean, and that the rows of X, S,
and N are zero sum. P is a diagonal matrix containing the powers of
the individual signals. C is constructed columnwise so that the p’th

column of C, i.e. ¢, contains a unit norm vector corresponding to

p>
the pointing vector of the p’th signal.
The spatial covariance matrix of a zero mean wide sense stationary

random vector quantity, e.g. X(t), is denoted by R with a subscript

corresponding to the quantity, e.g. R, . It is defined by:
H
R, =Ef(0x(""|

where ()H denotes Hermitian transpose, and E{} is the statistical

expectation operator.

We would like to work with the covariance matrices, but we do not
have access to them, and so must estimate them from the samples.
The standard, consistent, estimators of these are denoted by a hat
and are calculated from the matrices X, S, and N; e.g.
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A beamformer calculates a weight vector w € C™! that can be
applied to the data snapshots to produce the beamformer output:
H
Zye () =W x(1)
Following the definition of signal-to-interference-plus-noise ratio
(SNIR) as in [4], each data snapshot X(t) can be broken down into

the sum of statistically independent components, X, (t),X;(t)and
n(t), ie. the SOI, interfering signals and noise. The covariance

matrices of X, (t) and of X;(t)+n(t) are defined by:
Rgor = E{Xs (Dx " }
R, = E{x (0 + (), (0 + ()"

The SNIR is then calculated by the following formula:
W' RsorW

whR
PCA is a linear data analysis tool that is entirely data based, i.e. it
does not use any prior information. It is used in exploratory data
analysis, extracting dominant signal components from linear mix-
tures, and as a pre-processing step within many established BSS
algorithms. In this paper, we only use the data domain version car-
ried out by an SVD. However the ideas presented can be transferred
into the covariance domain with only small modifications to the
technique required.

Symbolically, the SVD operates on a nxT data matrix Y. It pro-
duces the following decomposition of this data matrix into an nxn

SNIR =
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unitary matrix U, an nxn diagonal matrix AY? Jandan nxT
modified data matrix, V:

Y=U"A"2V
The values on the diagonal of A"? are known as the singular val-

ues. They are non-negative. It is a convention to order the rows of V
so that the singular values are arranged in descending order. The

matrix V has the property that vvi = I,.

When using the SVD to carry out PCA, it is sufficient to calculate U
and use this to calculate a transformed data matrix Z according to:

Z=UY=A"?V
Thus the estimated covariance matrix of z(t) = Uy(t) is:

R,, =22"[T=A/T

Thus the estimated correlation between two different rows of Z is
zero following the SVD; usually this is referred to as the data matrix
Z being decorrelated. Under the constraint of using a unitary matrix,
such as U, the SVD also ensures that the sum of the powers of the
first p rows of Z is maximised, for any p.

We note that a unitary transformation of a vector quantity can be
considered to be energy preserving in the following way. We define

the total energy of a data vector y(t) as the sum of the diagonal

terms of its covariance matrix, e.g.
Py =Ely 0y, (07 f=[R ]

Thus the total energy of a data vector y(t) is:

ipyi = trace(E{y(t)y(t)H })

i=1
If the data is transformed according to z(t) = Uy(t) then, using
the linearity of the expectation operator, the new total energy is:

Singular Signals
-10dB 10dB 30dB Noise
0 degrees |44 degrees|86 degrees
Output | 100.1 0.0 % 0.2% 99.8% | 0.0%
9.2 0.1 % 98.5 % 03 % 1.2%
1.4 44.6 % 0.0 % 00% [554%

Table 1: The proportion of the channel powers due to each of
the signals and the noise

ipzi = trace(E{z(t)z(t)H }): trace(E {Uy(t)y(t)H vt }): ipyi
i=1 i=1

A similar result holds for the sample estimated total energy when a
unitary transform is applied to a data matrix. This is a consequence
of a unitary matrix performing only a rotation on a vector to which it
is applied.

3. POWER BASED SEPARATION

It is understood that applying the SVD is generally not sufficient to
separate out the original signals from each other. This is because the
SVD finds a new data matrix V such that the rows of the data matrix
have been decorrelated from each other and their powers have been
normalised, i.e. VVH = I, . Then transforming V to V” by apply-
ing a unitary matrix Q does not change this property:

V' =Qv=vVvHi-QvviQ" =qQI,Q" =1,
BSS algorithms use higher order statistics (implicitly or explicitly)
to find the correct unitary matrix to separate out the signals. It is,
however, incorrect to assume that the unitary matrix needed to sepa-
rate the signals after the SVD is uniformly distributed over the uni-
tary group of matrices [5]. A simple experiment can show that if a
signal has significantly greater power than the others, the SVD
comes close to separating it from the other signals. In this case, we
demonstrate that it is possible to achieve good signal separation
using only second order statistics. This is as expected by the energy-
compaction nature of the SVD.

We demonstrate this for a simulated ten sensor circular array, where
the spacing between two adjacent elements is half the wavelength of
the signals. Three Quaternary Phase Shift Keying (QPSK) signals of
length 10,000 samples are simulated, impinging on the array from
angles of arrival (AOAs) of {0°,44°,86°} with SNRs of -10dB,

10dB and 30dB respectively. This means that the weakest signal has
enough power so that it is just possible for the SVD to distinguish it
from noise, and there is at least a 20dB power difference between
any two signals.

The SVD was applied to the simulated data. Table 1 displays the
behaviour found; it shows how much of the power of each channel
is due to each of the signals, and how much is due to noise. The
three dominant channels between them contained almost all the
power of the three signals.

Table 1 shows that a good degree of signal separation has been
achieved. The dominant channel is comprised of 99.8% of the
+30dB signal, 0.2% of the +10dB signal and trivial amounts of the
weakest signal and noise: Thus this channel has succeeded in ex-
tracting the most powerful signal. There is a small amount of signal
leakage between signals that are only 20dB apart in power, e.g. the
0.2% just mentioned. Although this is a very small corruption of the
+30dB signal, it actually comprises a significant amount (16%) of
the total power of the +10dB signal. Thus significant proportions of
weak signals can corrupt the strong signals, where their influence is
small.

The level of signal separation just demonstrated, achieved by using
the SVD, is good. However it can only be achieved by the SVD
when the signals do have significantly different powers. Also, BSS



techniques can produce superior results, further reducing the cross
leakage by normalising the output channels and finding an appropri-
ate rotation matrix.

4. DOMAIN-WEIGHTED PCA

We introduce a robust adaptive beamformer that uses prior informa-
tion to impose artificially different signal powers, where they did
not exist before. This is followed by applying an SVD, which sepa-
rates the signals much better than they would have been had the
SVD been carried out on the raw data. This can be considered as
applying some pre-emphasis to the PCA.

The proposed DW-PCA technique has three distinct stages as shown
in Figure 1. In the following discussion of the stages, the case where
the prior information from the domain is in the form of a pointing
vector for the SOI, i.e. é1 , is considered.

Domain Transform: In a similar way to the Griffiths-Jim transfor-
mation, [6], domain knowledge is used to produce a transformation
of the data into a primary channel and a set of auxiliary channels by
means of a unitary transform. i.e.

uH
X, =UX=|"1L X
U

A
The first row of U, :ulH , is chosen so that clHul =1, where A

is near 1. The simplest choice is élH = ulH , but other choices are
possible e.g. the projection of ¢, onto the null space of {f: y€ . } .

The remaining rows of U are chosen so that the rows of U form a
basis. Hence U is unitary, and the transform is energy preserving.
The aim of this stage of processing is to ensure, by means of an
energy preserving transform, that the primary data channel is mainly
composed of the SOI, rather than other signals or noise. In the DW-
PCA, as opposed to the GSLC, [6], it is not necessary to ensure that
the SOI does not leak into the auxiliary channels. The DW-PCA
only requires that the SNIR of the primary channel is better than the
SNIR of the original data channels.
Primary Channel Enhancement: Now that a channel has been
produced to consist mainly of the SO, this channel is enhanced by a
factor p. Symbolically, this is achieved through the application of a
diagonal matrix D:
Y = DX,

The top-left entry of D is p, but the remaining diagonal entries are 1.
The effect of varying p will be considered in section 5, however
taking p=1 reduces D to the identity, and so is equivalent to doing
nothing. A normal value of p to take is 2. This stage is not energy
preserving —it enhances the energy in the primary channel.
Power Based Separation: Following the enhancement of the pri-
mary channel, it remains to apply PCA to all of the channels. This
applies an energy preserving transform in the form of a unitary ma-
trix Q:

Y, =QY =QDUX
Although the ordering of the rows in Y, the output of the power-
based separation, is ambiguous, it is trivial to either assign an order-
ing based on the powers of the outputs or to decide which output is
derived the most from the primary channel. Y, is the output of the
DW-PCA technique. The output of interest for robust ABF may be
the dominant powered signal, or the signal best aligned with the
prior pointing vector. The beamforming vector, w, can be found
from the corresponding row of the matrix product QDU.
The computational cost of the DW-PCA technique is not much
greater than that of the PCA. For an nx T data matrix, calculating
and applying U and D takes O(n*T+n*) operations. The PCA also

{ 1: Domain
_ \;“M { Transform
U Primary
channel
_______________________________ | U
Auxiliary (@ i 2: Primary
channels i Enhancement
VVVY Y 3: Power
' B
PCA : ased .
i Separation

Figure 1: Diagrammatic representation of the DW-PCA tech-
nique

dB Prior Error 0% Prior Error 2% Prior Error 8%

Jammer|None|Weak|Strong|None|Weak|Strong|None|Weak|Strong

Fixed 4.0 | 3.6 | -34 | 39|35 | -35 | 3.7|33 | -36

SMI |3.7(35] 33 282725 ]09|08]| 07

Diag (4.0 (3.6 | 35 |39|35 | 34 |36|32] 3.1

Wong (4.0 | 3.6 | -58 |39 [3.5 | -57 | 3.7 |33 | -58

p=1.1 4.0 33| 35 ||40]| 33| 35 [40(33 | 3.5

n=2 | 40|36 |35 |39|35]| 35 |38]33| 33

Table 2: Output SNIRs achieved, in several different levels of
jamming and prior error, by several techniques for extracting a
single SOI. The best results for each scenario are shaded.

takes O(n’T+ n’) operations. Empirically, the cost of the PCA is
observed to be the dominant factor.

5. RESULTS

Three simulations were used to demonstrate the behaviour of the
DW-PCA technique. The following algorithms were used for com-
parison: the fixed beamformer, which only uses the prior informa-
tion; the SMI MVDR beamformer, which uses prior information
and the data; the SMI MVDR beamformer with diagonal loading of
30, and the beamformer proposed by Wong et al. in [4] with pa-
rameters y=30 and e=16.

The first simulation was of a ten sensor circular array upon which
the SOI, composed of 500 samples of a QPSK signal, impinged at —
6dB SNR on each sensor. If a jammer was present it arrived from
the sidelobes at a SNR of either —10dB (weak) or +44dB (strong).

Three different levels of prior information were used, either ¢, was

accurate (= ¢ ) or it consisted of 98% or 92% of ¢; with the re-

maining 2% or 8% being random error vectors chosen from a
N(0,6°1) distribution. The output SNIRs, averaged over 100 Monte-
Carlo runs, are shown in table 2.

Table 2 shows that the DW-PCA technique is more robust to errors
in the prior information than diagonal loading techniques, while still
being adaptive enough to cope with sidelobe jamming. In the case of
strong jamming a value of p near unity performed the best, but in
the case of weak jamming pu=2 produced the best results.



To study the effects of different p values a second simulation was
run. This was of a 20 element linear array, as in [4], upon which the
QPSK SOI impinged with varying SNR. The prior information was
incorrect by 3°, i.e. ¢(6;) =¢;(d; +3°). A jamming signal was
present at a level of +20 dB, impinging on the array from a random
location in the sidelobes of the SOI. Figure 2 shows the performance
curves, obtained by averaging over 100 Monte-Carlo runs, for the
DW-PCA technique with various values of p. The optimal perform-
ance was calculated analytically by using the pseudo-inverse of
CP to separate the signals from each other.

Figure 2 shows that when the level of enhancement actually takes
the signal power to a level similar to the jammer power, then the
DW-PCA technique does not lead to signal separation. This is con-
sistent with the observations made at the beginning of section 2. For
large p the performance tends to that of a fixed beamformer.

When the DW-PCA technique does not lead to signal separation,
two of the singular values obtained by the SVD are similar. It is
possible to use this to detect when an unsuitable value of p has been
chosen, and the technique could be carried out again with a different
value. Further work needs to be done on quantifying the link be-
tween the differences between the singular values and the perform-
ance of the techniques.

The third simulation used the same setup as the second simulation,
only both the SOI and the jammer powers were fixed at 0dB, while
the error in the prior information was allowed to vary from 0° to 5°.
The performance curves for the various comparison algorithms and
for the DW-PCA technique with several different p values are
shown in Figure 3.

Figure 3 clearly demonstrates the difficulty the SMI ABF has with
errors in the prior information. This can be mitigated by using di-
agonal loading, and further mitigated by the use of Wong’s algo-
rithm; but neither of these are as robust as using a fixed beamformer
(although they will show better jammer rejection if the jammer is
more powerful). The plain SVD, imposing PCA, is not very good in
this situation as the jammer and signal powers are the same. How-
ever by increasing the p value, the performance of the algorithms
improves markedly, up to p=2. Beyond that, a further increase to
p=5 leads to the performance tending to that of a fixed beamformer
— this corresponds to an overemphasis on the prior information. It
should be noted that this over emphasis does not lead to perform-
ance as bad as that of the SMI ABF.

6. CONCLUSIONS

The Domain Weighted PCA technique offers a new, and very sim-
ple, technique for data analysis that allows prior information about
signals to be included in a soft manner. Thus we can avoid both the
over-reliance on and the rejection of the prior information. The spe-
cific version of the DW-PCA introduced in this paper uses one sim-
ple form of prior information. The technique can be easily extended
to incorporate more information, either for improved extraction of a
single signal or to enable the robust determination of a signal+noise
subspace.

We have demonstrated that the DW-PCA technique can operate as a
robust adaptive beamformer, with performance which depends on .,
but which can exceed that of other ABF techniques. The correct
selection of p can be important to obtain the best performance from
the technique. This can be aided by looking at the singular values
obtained from the SVD. In offering a method of using both the data
and ‘softly’ incorporating the prior information, the DW-PCA tech-
nique can offer performance that is startlingly distinct from other
data analysis techniques.
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Figure 3: SNIR varying with error in pointing vector for a vari-
ety of signal extraction techniques
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