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ABSTRACT 

Feature reduction is an important stage in pattern recogni-
tion. This paper deals with the feature reduction methods for 
a time-shift invariant feature, power spectrum, in radar 
automatic target recognition using high-resolution range 
profiles (HRRPs). Several existing feature reduction meth-
ods in pattern recognition are analyzed, and a weighted fea-
ture reduction method based on Fisher’s discriminant ratio 
(FDR) is proposed. According to the characteristics of radar 
HRRP target recognition, the proposed weighted feature 
reduction method uses an iterative algorithm to search for 
the optimal weight vector for power spectra of HRRPs, and 
thus reduces feature dimensionality. Compared with the 
method of using the raw power spectra and some existing 
feature reduction methods, the weighted feature reduction 
method can not only reduce feature dimensionality, but also 
improve recognition performance with low computation 
complexity. In the recognition experiments based on meas-
ured data, the proposed method is robust to different test 
data and achieves good recognition results. 

1. INTRODUCTION 

Statistical pattern recognition may be subdivided into four 
phases, namely, data acquisition, data preprocessing, feature 
reduction and classification. Usually raw features obtained 
in the first two phases are in a higher dimensional feature 
space. Some salient features are extracted from the raw fea-
tures in the feature reduction phase. Thereby feature reduc-
tion is an important approach to delete redundancy and de-
crease computation. 
High-resolution range profiles (HRRPs) contain the target 
structure signatures, such as target size, scatterer distribution, 
etc., thereby radar HRRP target recognition has received 
intensive attention from the radar automatic target recogni-
tion community[1~3]. However, HRRPs are sensitive to tar-
get-aspect, amplitude-scale and time-shift[1~3]. The refer-
ence[3] discussed a set of time-shift invariant features, 
higher-order spectra, of HRRP in detail, which showed that 
power spectrum (the 1st-order spectrum) has the best recog-
nition performance among the higher-order spectra. 
This paper deals with the feature reduction methods for the 
power spectra of HRRPs. Several existing feature reduction 
methods are analyzed, and a weighted feature reduction 
method based on Fisher’s discriminant ratio (FDR) is pro-

posed. Compared with the method of using the raw power 
spectra and some existing feature reduction methods, the 
proposed feature reduction method not only is robust to dif-
ferent test data, but also improves the recognition perform-
ance with low computation complexity in the recognition 
experiments based on measured data. 

2. SOME EXISTING FEATURE REDUCTION 
METHODS 

Fisher’s linear discriminant is a class separability measure, 
which has two forms, FDR[4] and Fisher’s optimal projection 
subspace[2,4]. FDR is applied to independent feature compo-
nents, and Fisher’s optimal projection subspace is applied to 
correlated feature components. 

 
2.1 Direct Feature Reduction Method based on Fisher’s 

Discriminant Ratio (FDR) 
Let there be c targets, and let { }| 1,2, ,ik k K=x ! represent 

all N -dimensional features of target iω  ( 1,2, ,i c= ! ), 

where k denotes the sample number. FDR of the n th feature 
component is defined as 
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where ( )i nµ and 2 ( )i nσ represent the mean and the variance 

of the n th feature component of target iω , respectively. 
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The weights can be defined as 
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where Th denotes the threshold. The corresponding reduced 
feature vector is 

( ) ( ) ( )ik s ik sr w n x nχ = ⋅ , 1, 2, ,r d= ! ; 

1,2, ,i c= ! ; 1, 2, ,k K= !            (5) 
where 

{ }L ( ) 0 | 1,2, ,d w n n N= ≠ = !                        (6) 

d denotes the number of nonzero elements of weight vec-
tor w . Thus the reduced feature vector is a d -dimensional 
vector. 
2.2 Feature Reduction Method based on Fisher’s Opti-

mal Projection Subspace 
Fisher’s optimal projection subspace is to seek a sub-
space =Span( ) N dR ×∈Ω U to maximize the class separability, 
which can satisfy 
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where
diag
∏ A denotes the product of all diagonal elements of 

the matrix A , wS and bS represent the average within-class 
scatter matrix over all targets and the between-class scatter 
matrix, respectively. 
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where im denotes the clustering center of target iω , m de-

notes the clustering center of all targets, and iP denotes the 

priori probability of target iω . By derivation[2,4], this nonlin-
ear optimization problem in Eq. (7) equals to a generalized 
eigenvalue decomposition problem of the matrix pen-
cil{ },b wS S , 

b j j w jλ=S u S u ,  1,2, ,j d= ! ,   d N<                (10) 

where ju , the j th column vector of the matrixU , is the ei-

genvector corresponding to the generalized eigen-
value jλ ( 1 2 d Nλ λ λ λ≥ ≥ ≥ ≥ ≥! ! ) of { },b wS S . The cor-

responding d -dimensional feature vector is 
T

ik ik=χ U x ,  1,2, ,i c= ! ;  1, 2, ,k K= !             (11) 

Thus the reduced feature vector is acquired from linear 
change of the raw feature. 

3. A WEIGHTED FEATURE REDUCTION METHOD 
BASED ON FISHER’S LINEAR DISCRIMINANT 

Compared with ordinary pattern recognition, several issues 
must be considered for radar HRRP target recognition. 
Firstly, time-shift invariant features should be extracted as 
the raw features due to the time-shift sensitivity of HRRP. 
Secondly, time-shift invariant features (such as higher-order 

spectra, central moments and so on) of HRRP are also sensi-
tive to target-aspect variation. Thereby, the HRRPs’ features 
of every target can be divided into many subsets according 
to different angular sectors, which are defined as feature sets 
of HRRP frames. Although every target has many feature 
sets in radar HRRP target recognition, the recognition result 
mainly depends on comparison between the between-class 
nearest patterns. Therefore, when computing weight vector 
or optimal projection subspace by means of various feature 
reduction methods, we need to use the between-class nearest 
sample sets to calculate the related weight vector or optimal 
projection subspace, and then average them to get the final 
result. 
The direct feature reduction method in Section 2.1 is to se-
lect the feature components with larger FDRs to reduce fea-
ture dimensionality. In other words, the weights used in this 
method are 1 or 0. Considering that most classification algo-
rithms use the similarity measure based on Euclidean dis-
tances, the Euclidean distances between samples will change, 
if raw feature components are multiplied by different 
weights. Therefore, a weighted feature reduction method 
based on FDR is proposed in this paper, in which feature 
components are multiplied by weights [ ]( ) 0,1w n ∈  

( 1,2, ,n N= ! )to increase rationality of the contribution of 
feature components to Euclidean distance calculation. The 
optimal weight vector is sought by an iterative algorithm to 
make the FDRs of feature components converge. The algo-
rithm is as follows. 
(1) Initialization: Let 0p = . Here the initialized feature vec-

tors are the power spectra. Let (0)
ikl ikl=χ x  

( 1,2, ,i c= ! ; 1, 2, ,k K= ! ; 1, 2, ,l L= ! ), where i denotes 
target class, k denotes frame number and l denotes feature 
vector number in a frame; 
(2)  Iterative Process: The between-class nearest feature sets 
of HRRPs frames are searched among the clustering centers. 
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frame of the j -th target is nearest to the k -th frame of the i -

th target. Thus there are c K⋅  between-class nearest feature 
sets in all. If Eq. (1) is used to calculate the FDR vectors of 
all between-class nearest feature 

sets{ }| 1, 2, ,q q c K= ⋅FDR ! , the average FDR vector is 
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Define the p th iterative weight vector as  
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(3) Stop Condition: If the weights of feature components 
converge, the iterative process ends. Here variance is used to 
measure the convergence. Let 0ε > . The variance of weight 

vector ( )pw is 
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(d) the fourth iterative weight vector                        (e) the optimal weight vector         

Fig. 1  the iterative weight vectors and the optimal weight vector for power spectra of measured HRRPs  
using the iterative algorithm based on FDR 
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where “ i ” denotes dot production between vectors. 
Let 1p p= + , and the iterative process continue. Otherwise, 

the weights converge, thus let the iterative process end. 
(4) Feature Reduction: Let the optimal weight vector be 

(0) (1) ( )p∗ =w w w wi i!i                                 (16) 
The weights can be defined as 
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Substituting ∗w into Eq. (5) gives the reduced feature vec-
tors{ }| 1, 2, , ; 1,2, , ; 1,2, ,ikl i c k K l L= = =χ ! ! ! . 

A fact worth emphasizing is that the FDR remains un-
changed whether the feature components are weighted or not, 
according to Eq. (1). However, the between-class nearest sets 
will change when the features are weighted, which leads to 
different FDR. This is one of the reasons that why the feature 
reduction method proposed in this paper has better recogni-
tion performance. 

4. RECOGNITION EXPERIMENTS BASED ON 
MEASURED DATA 

The recognition experiments performed here are based on 
airplane data measured by radar with the center frequency of 
5520 MHz and the bandwidth of 400 MHz . Training data 
cover almost all of the target-aspect angles of test data, but 
their elevation angles are different. 
When 3p = , the weight vector (3)w converges in the experi-

ment. Fig. 1 shows the corresponding (0) (3)w w∼ and the 

optimal weight vector ∗w , and they include all of the 
weights corresponding to positive and negative frequency 
components of power spectra. Actually only a half of feature 
components and weights, namely, the ones corresponding to 
positive or negative frequency components, are applied to 
recognition. The weight vectors of the direct feature reduc-
tion method based on FDR and of the proposed weighted 
feature reduction method are shown in Figs. 1 (a) and (e), 
respectively. From the waveforms of weight vectors, we can 
see the feature components corresponding to lower fre-
quency components have larger class separability than those 
corresponding to higher frequency components. For a com-
parison in recognition performance between the feature re-
duction methods, 18-dimensional feature vectors (reduced 
from the 128-dimensional power spectra) are used in the 
recognition experiments. 
Template matching method under the maximum correlation 
coefficient criterion (MCC-TMM)[1,3] is used to compare the 
recognition performances of the feature reduction methods. 
The recognition rates of the raw power spectra and the three 
kinds of reduced feature vectors are shown in Table I. Obvi-
ously, the weighted feature reduction method has the advan-
tage over the method of directly using FDR to reduce fea-
ture dimensionality of better recognition performance with 
the same computation complexity. The recognition rate of 
An-26 by reduced feature vectors based on Fisher’s optimal 
projection subspace is lower than that by raw power spectra. 
The reason is that An-26 is a propeller-driven aircraft and its 
HRRPs which are modulated by propellers scatter widely in 
the feature space. It is difficult to seek an optimal projection 
subspace which can divide all features of Yark-42, Cessna 
Citation S/ II and An-26 well. The result is that the recogni-
tion performance on An-26 is not as good as on the other 
two, and the average recognition rate by the subspace 
method is lower than that by the weighted method. There-
fore, the weighted feature reduction method proposed in this 



paper is robust to different test data. Moreover, the computa-
tion burden of the subspace method is larger than that of the 
weighted method. According to Eq. (11), for a N -
dimensional raw power spectrum (for our measured  

128N = ), the computation of the subspace method is 128 
times larger than that of the weighted method. 

Table I  a comparison in recognition performance between the 
feature reduction methods 

features targets 
recognition 

rates 
average 

recognition 
rates Yark-42 94.25% 

Cessna 
Citation S/II 

83.25% 
raw power 

spectra 
An-26 71.75% 

83.08% 

Yark-42 92.50% 
Cessna 

Citation S/II 
78.75% 

reduced feature 
vectors based 

on FDR 
An-26 72.00% 

81.08% 

Yark-42 94.50% 
Cessna 

Citation S/II 
89.75% 

weighted fea-
ture vectors 

based on FDR 
An-26 82.00% 

88.75% 

Yark-42 96.00% 
Cessna 

Citation S/II 
92.00% 

reduced feature 
vectors based 
on Fisher’s 

optimal projec-
tion subspace An-26 70.75% 

86.25% 

5. CONCLUSION 

A new feature reduction method, the weighted feature re-
duction method based on FDR is presented in this paper. 
Compared with the method of using the raw power spectra 
and some existing feature reduction methods, the weighted 
feature reduction method can not only reduce the feature 
dimensionality, but also improve the recognition perform-
ance with low computation complexity. In the recognition 
experiments based on measured data, the proposed method 
is robust to different test data and achieves good recognition 
results. 

REFERENCES 

[1] M. D. Xing, Z. Bao and B. N. Pei, “The properties of 
high-resolution range profiles,” Optical Engineering, Vol. 41 
(2), pp. 493-504, 2002. 

[2] X. D. Zhang, Y. Shi, Z. Bao, “A New Feature Vector Us-
ing Selected Bispectra for Signal Classification with Applica-
tion in Radar Target Recognition,” IEEE Trans. S. P., Vol. 49 
(9), pp. 1875-1885, 2001. 
[3] L. Du, H. W. Liu, Z. Bao, “Radar HRRP Target Recogni-
tion by the Higher-order Spectra Features”, Proceeding of the 
IASTED International Conference on Artificial Intelligence 
and Applications, ACTA, Calgary, pp. 627-632, 2004. 
[4] S. Theodoridis, K. Koutroumbas, Pattern Recognition 
(Second Edition), Elsevier Science, New York, 2003. 


	Index
	EUSIPCO 2005

	Conference Info
	Welcome Messages
	Sponsors
	Committees
	Venue Information
	Special Info

	Sessions
	Sunday 4, September 2005
	SunPmPO1-SIMILAR Interfaces for Handicapped

	Monday 5, September 2005
	MonAmOR1-Adaptive Filters (Oral I)
	MonAmOR2-Brain Computer Interface
	MonAmOR3-Speech Analysis, Production and Perception
	MonAmOR4-Hardware Implementations of DSP Algorithms
	MonAmOR5-Independent Component Analysis and Source Sepe ...
	MonAmOR6-MIMO Propagation and Channel Modeling (SPECIAL ...
	MonAmOR7-Adaptive Filters (Oral II)
	MonAmOR8-Speech Synthesis
	MonAmOR9-Signal and System Modeling and System Identifi ...
	MonAmOR10-Multiview Image Processing
	MonAmOR11-Cardiovascular System Analysis
	MonAmOR12-Channel Modeling, Estimation and Equalization
	MonPmPS1-PLENARY LECTURE (I)
	MonPmOR1-Signal Reconstruction
	MonPmOR2-Image Segmentation and Performance Evaluation
	MonPmOR3-Model-Based Sound Synthesis ( I ) (SPECIAL SES ...
	MonPmOR4-Security of Data Hiding and Watermarking ( I ) ...
	MonPmOR5-Geophysical Signal Processing ( I ) (SPECIAL S ...
	MonPmOR6-Speech Recognition
	MonPmPO1-Channel Modeling, Estimation and Equalization
	MonPmPO2-Nonlinear Methods in Signal Processing
	MonPmOR7-Sampling, Interpolation and Extrapolation
	MonPmOR8-Modulation, Encoding and Multiplexing
	MonPmOR9-Multichannel Signal Processing
	MonPmOR10-Ultrasound, Radar and Sonar
	MonPmOR11-Model-Based Sound Synthesis ( II ) (SPECIAL S ...
	MonPmOR12-Geophysical Signal Processing ( II ) (SPECIAL ...
	MonPmPO3-Image Segmentation and Performance Evaluation
	MonPmPO4-DSP Implementation

	Tuesday 6, September 2005
	TueAmOR1-Segmentation and Object Tracking
	TueAmOR2-Image Filtering
	TueAmOR3-OFDM and MC-CDMA Systems (SPECIAL SESSION)
	TueAmOR4-NEWCOM Session on the Advanced Signal Processi ...
	TueAmOR5-Bayesian Source Separation (SPECIAL SESSION)
	TueAmOR6-SIMILAR Session on Multimodal Signal Processin ...
	TueAmPO1-Image Watermarking
	TueAmPO2-Statistical Signal Processing (Poster I)
	TueAmOR7-Multicarrier Systems and OFDM
	TueAmOR8-Image Registration and Motion Estimation
	TueAmOR9-Image and Video Filtering
	TueAmOR10-NEWCOM Session on the Advanced Signal Process ...
	TueAmOR11-Novel Directions in Information Theoretic App ...
	TueAmOR12-Partial Update Adaptive Filters and Sparse Sy ...
	TueAmPO3-Biomedical Signal Processing
	TueAmPO4-Statistical Signal Processing (Poster II)
	TuePmPS1-PLENARY LECTURE (II)

	Wednesday 7, September 2005
	WedAmOR1-Nonstationary Signal Processing
	WedAmOR2-MIMO and Space-Time Processing
	WedAmOR3-Image Coding
	WedAmOR4-Detection and Estimation
	WedAmOR5-Methods to Improve and Measures to Assess Visu ...
	WedAmOR6-Recent Advances in Restoration of Audio (SPECI ...
	WedAmPO1-Adaptive Filters
	WedAmPO2-Multirate filtering and filter banks
	WedAmOR7-Filter Design and Structures
	WedAmOR8-Space-Time Coding, MIMO Systems and Beamformin ...
	WedAmOR9-Security of Data Hiding and Watermarking ( II  ...
	WedAmOR10-Recent Applications in Time-Frequency Analysi ...
	WedAmOR11-Novel Representations of Visual Information f ...
	WedAmPO3-Image Coding
	WedAmPO4-Video Coding
	WedPmPS1-PLENARY LECTURE (III)
	WedPmOR1-Speech Coding
	WedPmOR2-Bioinformatics
	WedPmOR3-Array Signal Processing
	WedPmOR4-Sensor Signal Processing
	WedPmOR5-VESTEL Session on Video Coding (Oral I)
	WedPmOR6-Multimedia Communications and Networking
	WedPmPO1-Signal Processing for Communications
	WedPmPO2-Image Analysis, Classification and Pattern Rec ...
	WedPmOR7-Beamforming
	WedPmOR8-Synchronization
	WedPmOR9-Radar
	WedPmOR10-VESTEL Session on Video Coding (Oral II)
	WedPmOR11-Machine Learning
	WedPmPO3-Multiresolution and Time-Frequency Processing
	WedPmPO4-I) Machine Vision, II) Facial Feature Analysis

	Thursday 8, September 2005
	ThuAmOR1-3DTV ( I ) (SPECIAL SESSION)
	ThuAmOR2-Performance Analysis, Optimization and Limits  ...
	ThuAmOR3-Face and Head Recognition
	ThuAmOR4-MIMO Receivers (SPECIAL SESSION)
	ThuAmOR5-Particle Filtering (SPECIAL SESSION)
	ThuAmOR6-Geometric Compression (SPECIAL SESSION)
	ThuAmPO1-Speech, speaker and language recognition
	ThuAmPO2-Topics in Audio Processing
	ThuAmOR7-Statistical Signal Analysis
	ThuAmOR8-Image Watermarking
	ThuAmOR9-Source Localization
	ThuAmOR10-MIMO Hardware and Rapid Prototyping (SPECIAL  ...
	ThuAmOR11-BIOSECURE Session on Multimodal Biometrics (  ...
	ThuAmOR12-3DTV ( II ) (SPECIAL SESSION)
	ThuAmPO3-Biomedical Signal Processing (Human Neural Sys ...
	ThuAmPO4-Speech Enhancement and Noise Reduction
	ThuPmPS1-PLENARY LECTURE (IV)
	ThuPmOR1-Isolated Word Recognition
	ThuPmOR2-Biomedical Signal Analysis
	ThuPmOR3-Multiuser Communications ( I )
	ThuPmOR4-Architecture and VLSI Hardware ( I )
	ThuPmOR5-Signal Processing for Music
	ThuPmOR6-BIOSECURE Session on Multimodal Biometrics ( I ...
	ThuPmPO1-Multimedia Indexing and Retrieval
	ThuPmOR7-Architecture and VLSI Hardware ( II )
	ThuPmOR8-Multiuser Communications (II)
	ThuPmOR9-Communication Applications
	ThuPmOR10-Astronomy
	ThuPmOR11-Face and Head Motion and Models
	ThuPmOR12-Ultra wideband (SPECIAL SESSION)


	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Ö
	Ø

	Papers
	Papers by Session
	All papers

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	Copyright
	About
	Current paper
	Presentation session
	Abstract
	Authors
	Lan Du



