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ABSTRACT
This article presents a new system for automatically extract-
ing high-level video concepts. The novelty of the approach
lies in the feature fusion method. The system architecture
is divided into three steps. The first step consists in cre-
ating sensors from a low-level (color or texture) descriptor,
and a Support Vector Machine (SVM) learning to recognize
a given concept (for example, “beach” or “road”). The sen-
sor fusion step is the combination of several sensors for each
concept. Finally, as the concepts depend on context, the con-
cept fusion step models interaction between concepts in or-
der to modify their prediction. The fusion method is based
on the Transferable Belief Model (TBM). It offers an appro-
priate framework for modeling source uncertainty and inter-
action between concepts. Results obtained on TREC video
protocol demonstrate the improvement provided by such a
combination, compared to mono-source information.

1. INTRODUCTION

To respond to the increase in audiovisual information, var-
ious methods for indexing, classification and retrieval have
emerged. The need to analyze the content has appeared to fa-
cilitate video understanding, which will contribute to a better
automatic classification.

Recent advances in content analysis have allowed video
annotation systems to be developed. However, the difficulty
consists in bridging the gap between low-level features and
semantic concepts. Semantic video classification techniques
are divided into two categories: (i) Rules-based approaches
exploit a priori knowledge on a particular domain (like for
example sport video) for extracting concepts [1, 2], (ii) Sta-
tistical approaches try to achieve annotations with an inde-
pendent analysis of videos. The statistical methods generally
require a training to categorize video scenes from low-level
features automatically. Different classifiers can be proposed,
for example, Bayesian networks [1] or Support vector ma-
chine (SVM) classifier [3]. In this last case, different com-
binations of features (only color descriptor, concatenation of
color and texture descriptors,. . . ) are considered to create the
SVM model and the combination that gives the best results
is chosen as the optimal combination. In [4], several features
are extracted and each feature is used to train an Artificial
Neural Networks (ANN) classifier. From these classifiers, a
combination method is achieved based on Dempster-Shafer
theory. However this combination requires a training again
to minimize the mean square error between the combined
output and the target output of a training set.

In this paper, a system framework for automatically se-
mantic video annotation is described. The system architec-
ture is depicted in figure 1. We distinguish three steps: sen-

sor, sensor fusion and concept fusion. Firstly, the sensor step
consists in creating a set of sensors from a low-level descrip-
tor (based on color or texture) and a Support Vector Machine
(SVM) learning to allow a given concept (for example, boat,
beach or basketball. . . ) to be predicted. Secondly, the sen-
sor fusion step corresponds to the combination of sensors for
each concept. Finally, the concept fusion step models interac-
tion between concepts. The fusion method is achieved using
the Transferable Belief Model (TBM). This is appropriate to
model source uncertainty and combine information. We have
applied our system using TREC video protocol [5]. The in-
terest of working with the TREC video base is the great quan-
tity of data (reference video segmentation, ground truth for
high-level concept extraction. . . )

The rest of this paper is organized as follows: In section 2
the image descriptors are presented. Section 3 describes the
method of high-level concept extraction. In section 4, the re-
sults of the method are shown. Finally, we present our con-
clusions.

2. LOW-LEVEL DESCRIPTORS

It is well-known that color and texture are visual cues used
for image classification or similarity searches. Color and tex-
ture are important features in image perception.

2.1 Color descriptor
Among the color descriptors, we retain color histogram
which captures global color distribution in an image. Se-
lected color space is YCbCr space, which is used in com-
pression MPEG. However, we do not use a uniform quantifi-
cation of the color space which gives the same weight to the
pixels near the centre of a bin as those that are located at the
edges. The use of fuzzy sets allows each pixel to associate a
membership degree to each bin. Each component of YCbCr
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Figure 2: A membership degree of a pixel to each bin.

is quantified into 8 bins as shown in figure 2. For each pixel
p, the bins bi, b j and bk are computed, respectively for each
component of YCbCr as:{

h(bi) = hi
h(bi+1) = 1−hi

(1)
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Figure 1: System architecture for sensor fusion and concept fusion.

The histogram is updated as follows:

For i, j,k = 0 to 1, h3d(bi,b j,bk)= h(bi)h(b j)h(bk)+h3d(bi,b j,bk)
(2)

Finally, after a normalization by the image size, a fuzzy 3D
histogram with 8x8x8 components is obtained.

2.2 Texture descriptor
Texture has been widely studied in recognition tasks. While
many computational approaches have been proposed, we
chose to design a descriptor inspired by human perception
and adapted to describe video content. This descriptor is di-
vided into two steps: retinal filter followed by a Gabor de-
composition.

At the first level of image processing, the retinal filter [6]
performs an adaptive compression of brightness intensity fol-
lowed by high-pass filtering. It provides a relative insensi-
tivity to local illumination variations and then carries out a
spectral whitening compensating for the 1/f image amplitude
spectrum of natural images.

In the primary visual cortex, cells are sensitive to stimuli
having a certain orientation and a certain frequency with a
specific position in the visual field. Here, we chose to model
this using two-dimensional Gabor function. Figure 3 shows
the bank of Gabor filters used in our experimentation. We
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Figure 3: Bank of 49 Gabor filters.

carried out this filtering by directly multiplying the retina
output image weighted by a Hanning window with the Ga-
bor filter in the Fourier domain. Finally, we obtained the
energy E( fk,θi) according to 7 spatial frequencies and 7 ori-
entations. A normalization [7] is then applied to be invariable
to image quality. Indeed, the blur is an isotropic function of
the G( f ) frequency and the normalization carried out by fre-
quency band removes this term.

E( fk,θi) =
E( fk,θi)G( fk)

∑ j E( fk,θ j)G( fk)
=

E( fk,θi)
∑ j E( fk,θ j)

(3)

Each keyframe is characterized by a matrix 7x7 where each
component corresponds to energy for an orientation and a
frequency.

3. HIGH-LEVEL FEATURE EXTRACTION

The fusion method aims to combine the response of the dif-
ferent sensors for a given concept and then model interaction
between concepts.

3.1 Sensors
The sensors are created from low-level descriptors (color or
texture). After a dimensionality reduction of descriptors, a
classifier is used to recognize each concept. A principal com-
ponent analysis (PCA) was performed to reduce feature di-
mensionality. The training is only applied on the keyframes
of TREC 2004 development data. For each descriptor, the
selected dimension is chosen to retain at least 99% of the
variance. In our experiments, we went from 512 to 64 com-
ponents for color descriptor and from 49 to 32 for texture
descriptor.

Then, the Support Vector Machine (SVM) classifier was
applied to learn each concept of TREC video. SVM is suc-
cessfully used in a variety of pattern recognition tasks. We
will quickly describe the principle of the SVM, a more de-
tailed description can be found in [8]. Let {x1 · · ·xn} be a set
of training data which are feature vectors of labeled images.
We are also given their labels {y1 · · ·yn} where yi ∈ {−1,1}.
The problem consists in approximating an unknown function
g such as:

g(x) =
L

∑
i=1

yi ·wi ·K(xi,x)+b (4)

where K( , ) is the kernel function, xi are called support vec-
tors determined from training data, L is the number of sup-
port vectors, yi is the label associated with each xi, and wi,
b are constants determined from training. In this study, the
commonly used radial basis function (RBF) kernel is consid-
ered. SVM classifier consists in finding the hyperplane that
separates the training data with a maximal margin. The clas-
sification of a new vector x is given by the sign of decision
function g. Nevertheless we prefer to consider a confidence
measure for classification. The perpendicular distance from
the hyperplane to vector x is used as a confidence measure.
We apply the SVM light developed by Thorsten Joachims [9]
with the default parameters.

A ground truth of each concept is carried out on TREC
2004 development data and allowed SVM model to be cre-
ated. The classifiers are then applied on the keyframes of



TREC 2004 test data. The important thing in this article is
not the classifier used but the way in which we combine the
classifiers. Finally, for each concept, two sensors are created
from color descriptor and texture descriptor.

3.2 Sensor fusion step
The fusion method is based on Transferable Belief
Model [10] coming from the Dempster-Shafer theory. This
tool is adapted to deal with imprecise information.

3.2.1 Transferable Belief Model

The set of hypotheses is defined: Ω = {H1, · · · ,Hn}. The
different sources of information will give a belief to subsets
Ai ∈ Ω. For each source, a Basic Belief Assignment (BBA)
is defined as:

m : 2Ω → [0,1]
Ai → m(Ai)

(5)

where 2Ω is the set of all subsets of Ω and m(Ai) is called
basic belief masses and represents a confidence measure that
is assigned to the subset Ai. The attribution of BBA for each
information source is constrained by the following rules:

m( /0) = 0
∑Ai∈2Ω m(Ai) = 1 (6)

where /0 is the empty set. Let m1 and m2 be the BBA respec-
tively attributed by source 1 and source 2, their conjunctive
combination is defined as:

m12(Ai) = ∑
A j∩Ak=Ai

m1(A j) ·m2(Ak) (7)

3.2.2 BBA definition

Without statistical knowledge, the fuzzy sets can be used
to model the BBA from the output x of the SVM learned
on a given concept. Figure 4 shows how SVM output is
used to attribute a confidence measure. The distribution of
SVM output (fig 4.a) corresponds to the perpendicular dis-
tance from the hyperplane of SVM model to the image vec-
tor. The closer the distance is to zero, the more likely the
classifier is to make an error and reciprocally. We then
defined the BBA as shown in figure 4.b. If the output of
the “Beach” concept is considered, the set of hypotheses is
Ω = {H1 = Beach,H1 = Beach}. mx(H1) is the confidence
that is assigned to the “Beach” concept , mx(H1∪H1) repre-
sents the doubt about the “Beach” concept and mx(H1) is the
confidence that is not the “Beach” concept.

3.2.3 Sensor fusion

The purpose of sensor fusion is to model the fusion of sev-
eral sensors on the same concept. Each sensor carries out an
observation and assigns its confidence over the set Ω. In our
experimentation, two sensors are defined from color descrip-
tor and texture descriptor. Table 1 illustrates the combination
of two sensors which relates the same concepts Hi. A mass
is often assigned to the empty set. This is interpreted such as
a conflict between the sensors. The conflict means that one
of the sensors makes a mistake but that one does not know
which. The mass in conflict Hi∩Hi = /0 is then transfered on
Hi∪Hi. This avoids making decision. Thus the combination
with other sensors will be able to allow a correct classifica-
tion.
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Figure 4: (a) Example of distribution of the SVM output on
the training set of “Beach” concept. (b) BBA definition from
SVM output.

Table 1: Interaction of two sensors m1 and m2 for the same
concept.

m2

Hi Hi ∪Hi Hi

m1

Hi Hi Hi Hi ∪Hi

Hi ∪Hi Hi Hi ∪Hi Hi

Hi Hi ∪Hi Hi Hi

3.2.4 Decision

We use the TREC protocol to evaluate classification and this
requires a ranked shot list per concept to be submitted. The
rules of decision are then applied to singleton hypotheses Hi.
The mass m(Hi) is selected for the final decision and repre-
sents the degree of confidence placed exactly on the concept
Hi. A shot can contain one or more keyframes and the pas-
sage of keyframes to shot is carried out in the following way:

vi = max
Ik∈Si

(m(H){Ik}) (8)

where Ik keyframes belong to a Si shot and vi is the confi-
dence degree of the concept H placed on the Si shot.

3.3 Concept fusion step

The concept fusion step models interaction between con-
cepts. The principle consists in combining a concept with
another concept having a good reliability to improve the clas-
sification. The BBA on a set Ω1 = {H1,H1} can also be
combined with the BBA of another set Ω2 = {H2,H2} if a
relation exists between H1 and H2. For instance, if they are
exclusive, Table 2 shows how the combination is carried out.
Several strategies can be adopted to deal with the empty set.
As previously, the mass is transfered on the union H1∪H1.

4. EXPERIMENTS AND DATA ANALYSIS

In this section, our purpose is to judge the effectiveness of
the fusion method previously described.



Table 2: Combination of the m1 concept with a m2 concept
having good reliability.

m2

H2 = H1 H2 ∪H2 = H1 ∪H1 H2 = H1 ∪H1

m1

H1 H1 ∪H1 H1 H1

H1 ∪H1 H1 H1 ∪H1 H1 ∪H1

H1 Hi Hi Hi

4.1 Data
We considered a high-level feature extraction task over a
keyframe dataset of TREC Video data. The elementary unit
in the context of TREC is a shot and a shot can contain one or
more keyframes. This data is provided by the National Insti-
tute of Standards and Technology (NIST). The TREC 2004
development data consists of 254 videos which is represented
by 138823 keyframes and the TREC 2004 test data has 128
videos with 48818 keyframes. The video collection contains
CNN or ABC news and advertisements.

4.2 Results of fusion
The evaluation of the ranked shot list is performed by aver-
age precision (AP) and total number of relevant documents
(NRD) returned for a given concept. Average precision is the
mean of the precision value obtained after each relevant shot
is retrieved. Table 3 illustrates the method of fusion. The
results show that the number of documents found by com-
bining the color and texture sensors (Sensor fusion) is higher
or equal to the number of documents found independently
by the sensors. Obviously, the results depend on the kind of
descriptor and the training carried out with the classifier. If
the sensors taken separately are not very effective, their com-
bination will not be able to find all the documents. The im-
portant point is that the combination of sensors improves the
number of documents found. A studied concept can be put

Table 3: Results of sensor and concept fusion. The first line
of each concept corresponds to total number of relevant doc-
uments and the second one is average precision.

Concept Tot. Number Texture Color Sensor Concept
Relevant Doc. sensor sensor fusion fusion

Boat 441 62 120 120 120
Ship 0.0054 0.0185 0.0182 0.0191

Beach 374 84 139 139 145
0.0143 0.0358 0.036 0.0381

Basket 103 11 22 34 34
scored 0.0006 0.0049 0.0065 0.0071

Airplane 62 18 14 20 28
takeoff 0.0045 0.002 0.0049 0.0327
People 1695 153 167 171 191
walking 0.009 0.0084 0.0081 0.0102
Physical 292 28 41 50 54
violence 0.0016 0.0024 0.0036 0.0048

Road 938 205 162 243 279
0.0418 0.0128 0.0322 0.0429

in competition with another concept of better quality in or-
der to improve the precision. It allows false alarms of ranked
shot list to be removed. A new concept is then defined con-
taining mono-color and few textured images because often
black images are inserted in videos. The concepts interact
with the “Monocolor” concept and the results are shown in
Table 3 (Concept fusion). The results show that the number
of documents found and the precision increases.

This process is iterative and the concept fusion output
can be combined with other concepts. For example, if a
“Natural landscapes” concept is created, we will be able to
combine it with the “Basket scored” concept but not with the
others because they are not exclusive of landscapes. This
combination still improves the results with 37 relevant shots
found against 34 and a mean average precision equals 0.0117
against 0.0065. The difficulty consists in finding new con-
cepts which will be able to remove the false alarms as well
as possible.

5. CONCLUSION

We have presented a method of high-level concept extrac-
tion. This approach is divided into three steps. First, sensors
are created for each concept from color or texture descrip-
tors and SVM learning. Then, the sensor fusion is performed
for each concept to improve the classification. Finally, the
concept fusion models interaction between concepts. The fu-
sion method is based on the Transferable Belief Model. This
tool is adapted to model imprecise information of sensors.
Results obtained on TREC video protocol demonstrate the
improvement provided by such a combination, compared to
mono-source information. The fusion method can be applied
with other sensors (audio information) and can also be used
to model other interactions between concepts.
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