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ABSTRACT*) 
This paper considers an application of the warped discrete 

Fourier transform (WDFT) in the perceptually motivated speech 
enhancement. Namely, the problem of signal distortions generated 
by WDFT synthesis block is of interest. Spectral features of the 
reconstructed signal are analyzed and discussed in context of the 
perceptual processing. Our proposition is to construct an over-
complete WDFT sinusoidal basis in order to minimize reconstruc-
tion error. The new approach is validated in practical speech en-
hancement system. The results show that the proposed algorithm 
outperforms both conventional DFT and pure WDFT solutions. 

1. INTRODUCTION 
The discrete Fourier transform (DFT) is a powerful tool in the 

uniform spectral analysis. However, a variety of applications re-
quires nonuniform frequency decomposition. An example is per-
ceptually motivated speech enhancement. 

Recently proposed the warped discrete Fourier transform 
(WDFT) [1] enables non-uniform sampling the z-transform of fi-
nite length sequence by using allpass function. In the context of 
auditory based speech enhancement, there is a need for perceptual 
warping that allocates frequency samples in good accordance with 
psychoacoustic scale (Bark or ERB) [2]. 

Most of existing noise reduction systems, work in the fre-
quency domain using well known spectral weighting technique. 
Although these methods are very simple and easy to implement, 
their weak point is the residual noise also known as musical tones. 
The verified approach is to modify the weighting rule to keep mu-
sical tones slightly below the masking threshold [3]. 

In our previous work [4] we employed WDFT in perceptual 
noise reduction system not only as a basis for masking model but 
also as frequency decomposition tool. In that way, overall 
processing is performed solely in the warped spectrum domain and 
transformations between different frequency scales are no longer 
needed. It results in simplified system architecture. Moreover 
speech processing performed in critical band domain is more accu-
rate in the context of psychoacoustic modelling. The performance 
of the WDFT based speech enhancement system seems to be quite 
satisfactory in the case of speech signals with dominant low fre-
quency components. Unfortunately, for wideband signals the dis-
tortions in high frequency range may be noticeable and further 
improvements are needed.  

The possible cause of the degradation of high frequency com-
ponents is imperfect WDFT synthesis block which only approxi-
mates inverse transform. Therefore, our proposition is to construct 
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an overcomplete WDFT sinusoidal basis in order to minimize re-
construction error. In that way we define a new extension of 
WDFT which is more suitable for perceptual speech processing 
than ordinary WDFT. 

2. WDFT 
The warped discrete Fourier transform (WDFT) is a special 

case of nonuniform DFT. It has frequency samples allocated non-
uniformly but regularly over the unit circle. The WDFT can be 
defined using the matrix representation as follows 
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with ˆkz  being the images of allpass transformed equidistant points 
of the unit circle 
 ( )1 2 / 1ˆ , 0 1j k N

k k kz e z A z k Nπ− − −= → = = −… . (2) 

( )A z  can be an arbitrary allpass function. Note that D  is the 
Vandermonde matrix. The determinant of such a matrix has 
non-zero value for distinct points ˆkz . As this condition is satisfied, 
the invertibility of the WDFT is guaranteed from the theoretical 
point of view. But for perceptual warping [2] which is obtained 
using first order allpass function 
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some z-transform points are placed close together on the unit circle 
and numerical problems arise. 

Fortunately, there are number of methods for approximate in-
version of ill-conditioned matrices. They exploit the singular value 
decomposition (SVD) defined as 
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where iu , iv  are orthogonal columns and H  denotes Hermitian 
transpose, iσ  are singular values. The error amplification can be 
measured using a matrix condition number 
 ( ) 1

max mincond /σ σ−= =D D D . (5) 

The singular value distributions for several different WDFT matri-
ces are depicted in Fig. 1. It can be easily verified that many singu-
lar values are close to zero. 
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Figure 1. Distribution of singular values as function of warp-

ing coefficient for fixed transform size. 
The SVD components not only provide many useful insights 

into matrix ill-conditioning but also, they can be used to form 
a pseudoinverse matrix 
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The symbols if  denote the so-called filter factors and they all have 
to equal unity for precise inverse. The regularization theory [5] 
advises to eliminate the influence of small singular values by 
weakening their contribution in (6). This is done by setting if  
appropriately. Unfortunately, as we show in the next Section, this 
operation changes the spectral content of the data. 

3. RECONSTRUCTION ERROR ANALYSIS 
Using matrix notation, we can define the signal distortion vec-

tor as the difference between an original and a reconstructed signal 
column vector 
 ( )ˆ= †d x - x = I - D D x . (7) 

Corresponding spectral domain measure can be formulated as the 
average power spectrum of the signal distortion 

 ( ) ( ){ } ( ) ( )21 1 H
ddS E

N N
ω ω ω ω= = dde d e R e , (8) 

where E{} is expectation symbol and 
 ( ) 1 2 ( 1)1 j j j Ne e eω ω ωω − ⋅ − ⋅ − ⋅ −⎡ ⎤= ⎣ ⎦e …  (9) 

is DFT-related sinusoidal basis vector. ddR  denotes the covariance 

matrix of the distortion signal. Let = − †Q I D D , then 
 H=dd xxR QR Q , (10) 
where xxR  is covariance matrix of the processed signal. It is clear 
that the spectral distortion (8) defined as absolute error, depends on 
input signal characteristic and fidelity of the inverse WDFT ap-
proximation. Theoretically, for non-zero xxR  an exact inverse is 
possible when all elements of Q  are equal to zero. Since, the 
pseudoinverse is computed using SVD approach (6) 
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appropriate setting of filter factors may be helpful. Unfortunately, 
in the case of perceptual warping, choice of the regularization pa-
rameters has minimal impact on the spectral distortion level. We 
found that, even unstable approximation of the inverse WDFT, 
produces relatively high reconstruction error and it is magnified by 
further stabilization. 
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Figure 2. Power spectrum of original signal and correspond-

ing synthesis error (solid line). 
The only way to minimize spectral distortion is to modify the trans-
form matrix in such way that a number of almost zero singular 
values will be decreased. It is identical to reducing eccentricity of 
SVD ellipsoid that is an image of the unit sphere in N-dimensional 
space. 

Fig. 2 depicts power spectrum of an example input signal 
(colored Gaussian noise) and corresponding spectral distortion 
computed analytically using (8). It can be observed that the level of 
distortions at a given frequency depends on distance between 
neighbouring WDFT bins. Signal is perfectly reconstructed only at 
transform points and the spectral distortions are evident especially 
in stretched frequency regions while in the compressed regions the 
synthesis error seems to be acceptable. 

4. OVERCOMPLETE WDFT VECTOR BASIS 

4.1 Geometric signal theory 
The k-th row of the WDFT matrix is in fact a complex sinu-

soidal vector 
 1 2 1ˆ ˆ ˆ1 N

k k k kz z z− − − +⎡ ⎤= ⎣ ⎦s … . (12) 

Theoretically for distinct transform points the rows of the WDFT 
matrix are linearly independent (due to non-zero determinant of the 
Vandermonde matrix). Therefore, WDFT sinusoidal vectors (12) 
form a non-orthogonal basis { }0 1 2 -1, , , , NS = s s s s…  for complex 

vector space N^ , so that any input vector can be expressed as 
linear combination of them. 

If we relax the constraint that the vectors have to be independ-
ent we can construct an overcomplete non-orthogonal basis. Al-
though, such a basis is redundant for defining vector space, it can 
prove invaluable for synthesis error correction. Namely, by appro-
priate selection of vector basis we can modify the singular value 
distributions of the corresponding transform matrix. 

Note, that since we suppose overcomplete basis, the new 
WDFT matrix is no longer square and number of rows M N>  is 
increased. Matrix representation of the extended WDFT can be 
formulated as follows 
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, (13) 

A generalized inverse [6] of the rectangular matrix can be easily 
found using the same SVD procedure as for square WDFT matrix. 
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Figure 3. Relation between value of the warping parameter 

and size of the overcomplete basis. 
4.2 Constructing overcomplete basis 

From a practical point of view, there are least two conditions 
for building an overcomplete WDFT vector basis. Firstly, we need 
to preserve the regularity of transform points (uniform frequency 
resolution in a psychoacoustic scale). Secondly, size of the new 
sinusoidal basis should be small as possible to minimize complex-
ity load. 

Because, every direction in N^ , indicated by basis vector, 
corresponds to particular frequency region, it is straightforward to 
consider the WDFT operation as a critically decimated filter bank. 
The k-th row of WDFT matrix can be viewed as a finite response 
(FIR) filter with transfer function given by 

 ( ) ( ) , 0 1n
k k

n

H z A z z k N
∞

−

=−∞

= = −∑ … . (14) 

Since, ( )A z  is first-order allpass function (3), ( )kH z  is a band-
pass filter with a center frequency at  

 ( )1 1ˆ 2tan tan , angle
1 2

k
k k k

a z
a

ωω ω− ⎛ ⎞+ ⎛ ⎞= =⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠
 (15) 

and bandwidth about 2 / Nπ . 
The new overcomplete basis should be constructed from 

M N>  vectors corresponding to FIR filters whose center fre-
quencies are allocated regularly over unit circle. It can be done by 
redefining transform points 
 / , 0 1j k M

kz e k Mπ= = −… . (16) 
If we assume negative value of the allpass parameter, the maximal 
angular distance between the new z-transform points is 

 1
max

1 2 /2tan tan
1 2

a M
a

π πω π − ⎛ ⎞+ −⎛ ⎞Δ = − ⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠
. (17) 

To obtain the same spectral resolution in the high frequency re-
gions as for conventional DFT we assumed that separation of the 
z-transform points is not greater than 2 / Nπ . Substituting 

max 2 / Nω πΔ =  into (17) and solving for M  we obtain 
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The relationship between the parameter a  and M  for different 
size of analysis window can be observed in Fig. 3. It is easy to see, 
that for strong warping the size of the overcomplete basis set rap-
idly increases. 

Now, we can back on moment to the reconstruction error 
analysis presented in Section 3. It is clear that the spectral distor-
tion (8) can be computed for rectangular WDFT matrices as well as 
for square matrices. 
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Figure 4. The power spectrum of an example input signal 

and corresponding spectral distortions calculated 
for different-size WDFT transforms with constant N = 64. 

Fig. 4 depicts the power spectrum of an example input signal and 
corresponding spectral distortions calculated for different-size 
WDFT transforms. As it is shown, the synthesis error decreases for 
high M  and can be completely neglected for optM M> . 

5. SPEECH ENHANCEMENT EXPERIMENTS 

5.1 System overview 
The complete implementation details of the WDFT based 

noise reduction system were described in our previous work [4]. 
Here, only brief outline is presented.  

Common psychoacoustically motivated spectral weighting 
technique [7] is used for noise reduction. If we denote predefined 
residual noise level by nζ , the weighting function can be ex-
pressed as follows 

 ( ) ( )
( ) ( )min 1, , 0 1TTIND IND

n
nn

R
H H

R
ω

ω ζ ω
ω

⎧ ⎫⎪ ⎪= + ≤ ≤⎨ ⎬
⎪ ⎪⎩ ⎭

. (19) 

To calculate weighting coefficients the estimates of the masking 
threshold ( )TTR ω  and noise power spectral density ( )nnR ω  are 
only needed. The simple modification of Johnston’s perceptual 
entropy model [8] is used as a basis for clean speech masking 
threshold estimation. As a pre-processor for masking model, log 
spectral amplitude (LSA) estimator was implemented. The noise 
power spectrum estimation is performed via minima controlled 
recursive averaging (MCRA) approach [9]. 

Three variants of the noise reduction system were tested: the 
first with conventional DFT based analysis/synthesis block, the 
second with ordinary WDFT block and the last with extended 
WDFT block. In all cases the sampling frequency was 8 kHz. Input 
samples were partitioned into frames of length 256N =  (32 ms) 
with 50% overlap and multiplied by Hanning window. In order to 
reduce computational complexity, the size of the analysis window 
of extended WDFT system was reduced to 128 samples. It can be 
seen in Fig. 3 that, optimal size of overcomplete WDFT basis for 

128N =  and the allpass parameter 0.4a = −  is close to 300. From 
practical reasons, this value can be slightly decreased. In this way, 
the final size of the extended WDFT matrix was 256 128× . 
5.2 Performance evaluation 

For our experiments the set of eight speech sentences with 
strong high frequency components was selected. The sentences 
were about a 5-8 s long. The coloured noise was added to the clean 
signals such that the segmental signal to noise ratio (SEGSNR) was 
between -5 dB and 20 dB. 
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Figure 6. Spectrograms of noisy speech (a), speech enhanced 
with pure WDFT based method (b) and proposed method (c). 

Noise attenuation factor (NA) defined as the mean ratio of the 
input to output noise power, was used to evaluate the suppression 
capabilities of tested systems. Speech distortions were measured 
using SEGSNR, where the noise was interpreted as a difference 
between original and enhanced speech [10]. The higher value of 
this factor indicates the weaker speech distortions. 

The result of experiments is depicted in Fig. 7. Extended 
WDFT system has significantly better noise attenuation (NA) per-
formance than conventional DFT system and comparable to pure 
WDFT method. In the case of speech distortion measure 
(SEGSNR), the similar results are obtained for extended WDFT 
and DFT systems. However, they are much better than for pure 
WDFT method. It is not surprise since synthesis error is efficiently 
reduced using overcomplete basis. 

Spectral structure of the residual noise and speech distortions 
can be verified in Fig. 6. In the low frequency region there is no 
noticeable difference between the systems. Contrary to pure WDFT 
solution the high frequency distortions are not produced by ex-
tended WDFT synthesis block and the performance of speech en-
hancement system in high frequency range is not degenerated. 

6. CONCLUSIONS 
The method for cancellation of the synthesis error was devel-

oped. The proposed algorithm of constructing the overcomplete 
WDFT basis provides solution that not only solves the reconstruc-
tion problem but also allows obtaining the same spectral resolution 
in the high frequency regions as for conventional DFT. Experi-
ments were done for extended WDFT speech enhancement system. 
The results clearly show that the new algorithm outperforms not 
only conventional DFT method but also pure WDFT system. Now, 
high quality perceptual speech processing is possible even for 
wideband signals. 

In our case computational complexity was reduced by shorten-
ing analysis window but in general case it is not always possible. 
Commonly, cancellation of the synthesis error is done at a cost of 
increased computational load. Therefore, further work is aimed at 
reduction of computational complexity of the new WDFT scheme. 
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Figure 7. Performance evaluation: DFT based system 

(crosses), pure WDFT (squares), extended WDFT (circles). 
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