
LOSSLESS CODING USING VARIABLE BLOCK-SIZE ADAPTIVE PREDICTION
OPTIMIZED FOR EACH IMAGE

Ichiro Matsuda, Nau Ozaki, Yuji Umezu and Susumu Itoh

Department of Electrical Engineering, Faculty of Science and Technology,
Science University of Tokyo

2641 Yamazaki, Noda-shi, Chiba 278-8510, JAPAN
Tel: +81 4 7124 1501 (ex.3722); Fax: +81 4 7124 9367

E-mail: matsuda@itohws01.ee.noda.sut.ac.jp

ABSTRACT
This paper proposes an efficient lossless coding scheme
for still images. The scheme employs a block-adaptive
prediction technique to remove spatial redundancy in a
given image. The resulting prediction errors are encoded
using context-adaptive arithmetic coding. Several coding
parameters, which must be sent to a decoder as side
information, are iteratively optimized for each image so that
the number of coding bits including the side information
can have a minimum. Moreover, quadtree-based variable
block-size partitioning is introduced into the above adaptive
prediction technique. Experimental results show that the
proposed coding scheme attains the best coding performance
among the current state-of-the-art lossless coding schemes.

1. INTRODUCTION

Linear prediction is often used for lossless image coding as
a simple and effective tool to remove spatial redundancy in a
given image. To attain accurate prediction for nonstationary
images, several techniques which adapt prediction coeffi-
cients according to local characteristics of image signals
are proposed. Basically, there are two approaches for such
adaptive prediction techniques, namely, backward-adaptive
and forward-adaptive prediction. Since the backward-
adaptive prediction exploits information in a local causal
area, it can adapt prediction coefficients pel-by-pel without
any side information [1, 2]. However, this approach usually
increases complexity of not only encoding but also decoding
because the identical operation for the adaptation must be
carried out at both encoder and decoder sides. On the
other hand, the forward-adaptive prediction generally gives
stable performance owing to use of information unavailable
at the decoder [3, 4, 5]. In addition, it can be fast in
decoding because most of expensive computation needed for
the adaptation is performed only at the encoder side.

From this point of view, we previously proposed a
novel lossless coding scheme based on the forward-adaptive
prediction [6]. The scheme takes advantage of a block-
adaptive prediction technique where a set of linear predictors
are designed for each image and an appropriate one is se-
lected from the set block-by-block. Unlike the conventional
techniques [4, 5] which utilize predictors designed in a
minimum mean square error (MMSE) sense, our scheme
iteratively optimizes the predictors so that a cost function
corresponding to the number of coding bits required for the
prediction errors can have a minimum. As a result, the
obtained predictors provide better coding performance than
the conventional MMSE-based predictors. Nevertheless, the

coding scheme is not necessarily optimum because the cost
function does not reflect the amount of side information
which is needed to carry out the adaptive prediction at the
decoder side.

In this paper, we introduce a new cost function which is
defined as the sum of coding bits for the prediction errors
and the side information. Moreover, a variable block-size
adaptive prediction method using the above cost function is
developed to enable global optimization of the coding rate
including the side information on predictor selection. The
effectiveness of the proposed coding scheme is confirmed
through comparison with current state-of-the-art lossless
coding schemes.

2. THE PROPOSED CODING SCHEME

Our lossless coding scheme employs the block-adaptive
prediction technique [4] which partitions an image into
square blocks and classifies them into several classes. Each
class has an individual predictor which is optimized for
blocks of the same class. When the current pel p0 is in
the block belonging to the m-th class (m = 1,2, . . . ,M), a
predicted value ŝ(p0) is calculated by the following equation:

ŝ(p0) =

K∑

k=1

am(k) · s(pk), (1)

where am(k)s are prediction coefficients of the m-th predictor,
pks are pels used for the prediction (k = 1,2, . . . ,K) and s(pk)
represents a value of image signals at the pel pk. Figure 1
shows disposition of the pels used in Eq. (1).

After the prediction, context modeling for adaptive
arithmetic coding of the prediction error e = s(p0)− ŝ(p0) is
conducted. This context modeling is based on non-linear
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Figure 1: Disposition of pels for the prediction (K = 30).
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Figure 2: Context modeling for adaptive arithmetic coding.

quantization of a context function which captures statistical
property of the prediction errors in a local causal area [7].
In this paper, the context function is defined as the weighted
sum of absolute prediction errors at already encoded twelve
pels.

U =

12∑

k=1

1
δk
·
∣∣∣s(pk)− ŝ(pk)

∣∣∣ , (2)

where δk is the Euclidean distance of the pel pk from the
current pel p0. Each quantization level of U corresponds to
one of sixteen contexts (n = 1,2, . . . ,16) as shown in Figure 2
and thresholds {Thm(1),Thm(2), . . . ,Thm(15)} used in this
quantization are optimized for each class (m) as described
later. For each context, we then consider that a conditional
probability density function (PDF) of the prediction error e
can be modeled by the generalized Gaussian function [6]:

P(e |n) =
cn·η(cn,σn)
2Γ(1/cn)

·exp
{
−
∣∣∣η(cn,σn)·e

∣∣∣cn
}
,

η(cn,σn) =
1
σn

√
Γ(3/cn)
Γ(1/cn)

, (3)

where Γ(·) is the gamma function, σn is standard deviation
of e and cn is a shape parameter which controls sharpness
of the PDF. In this scheme, a fixed value of σn is given
for each context [6]. Since 8-bit grayscale images contain
integer values from 0 to 255, possible values of the prediction
error e for a given ŝ(p0) are also limited to the following 256
values:

e ∈ {
s− ŝ(p0) | s = 0,1,2, . . . ,255

}
. (4)

Therefor, a conditional probability of occurrence of each
possible value of e, when both the context n and the predicted
value ŝ(p0) are known, is derived from the above PDF.

Pr(e | ŝ(p0),n) =
Pr(e |n)∑255

s=0 Pr(s− ŝ(p0) |n)
, (5)

Pr(e |n) =

∫ hs/2

−hs/2
P(e +ε |n) dε. (6)

Actually, the predicted value ŝ(p0) is explicitly rounded
to the nearest multiples of hs to avoid accumulation of
unexpected rounding errors. Hence the value of hs is used
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Figure 3: Conditional probability of occurrence of the pre-
diction error e.

as an interval of integration of the PDF in Eq. (6). Adaptive
arithmetic coding of the actual value of e is carried out ac-
cording to the conditional probabilities calculated by Eqs. (5)
and (6). Note that the numerator of Eq. (5) corresponds
to the area shown in dark gray and the denominator is
the sum of the shaded areas in Figure 3. It illustrates
that a small value of hs allows accurate modeling of the
probabilities in consideration of a fractional part of the
predicted value (ŝ(p0)−bŝ(p0)c). In this case, by storing all of
the probabilities in a look-up table at a sampling rate of 1/hs,
we can considerably reduce the computation required for the
adaptive arithmetic coding. Our experiments show that a
value of hs = 1/8 is a reasonable choice in terms of coding
efficiency and memory consumption for the look-up table.

3. OPTIMIZATION OF CODING PARAMETERS

In the proposed lossless coding scheme, parameters listed
below must be sent to a decoder as side information.
• Prediction coefficients {am(k) | k = 1, . . . ,K} for each class.
• Thresholds {Thm(1),Thm(2), . . . ,Thm(15)} for each class.
• Class label m for each block.
• Shape parameter cn for each context.

Values of these parameters are iteratively optimized for
each image so that the following cost function can have a
minimum.

J = −
∑

p0

log2 Pr(e | ŝ(p0),n) + Bside. (7)

The first term of the cost function represents the number of
coding bits required for the adaptive arithmetic coding of the
prediction errors. On the other hand, the second term (Bside)
indicates the amount of side information on the above coding
parameters. Since these parameters are encoded by using
arithmetic code and proper probability models, a value of
Bside continually changes in the optimization process. In our
previous work [6], the cost function did not include the term
of Bside and, as a matter of course, the optimization process
could not minimize the overall coding rate. It is expected
that use of the new cost function given by Eq. (7) yields a
better trade-off between the number of coding bits for the



prediction errors and that for the side information. Concrete
procedures for the optimization are as follows.

(1) Classify every block into one of M classes according
to variance of image intensity within the block, and
design initial predictors for individual classes using a fast
method developed on the assumption of the Gaussian
PDF [8].

(2) Choose two prediction coefficients am(i) and am( j)
randomly, and carry out partial optimization by varying
values of them gradually. Repeat the partial optimization
a certain number of times in each class.

(3) Optimize the thresholds {Thm(1), Thm(2), . . . , Thm(15)}
in each class by using the dynamic programming tech-
nique.

(4) Select the optimum value of the shape parameter cn from
sixteen values (0.2,0.4,0.6, . . . ,3.2) in each context.

(5) Re-classify all the blocks by selecting the optimum
predictor, or the optimum class in each block.

(6) Repeat the procedures (2), (3), (4) and (5) until all the
coding parameters converge.

4. VARIABLE BLOCK-SIZE ADAPTIVE
PREDICTION

In the block-adaptive prediction technique, adoption of
smaller block-size obviously improves accuracy of the
adaptive prediction, while it increases the amount of side
information on class labels (m). Past researches [4, 5, 6]
found that the block-size of 8×8 pels was reasonable in
terms of the average coding performance. However, the
best block-size generally depends on local characteristics of
image signals and adaptation of the block-size must improve
the coding performance. Thereupon, we introduce quadtree-
based variable block-size partitioning [9] into the block-
adaptive prediction. A quadtree is built by recursive parti-
tioning of a square block into four sub-blocks. Each node of
the tree, except in the lowest level, has a flag which indicates
whether the corresponding block is further partitioned ‘1’
or not ‘0’. Accordingly, an arbitrary partitioning pattern of
blocks based on the quadtree structure can be represented by
a series of such flags as shown in Figure 4. In this paper,
five-level partitioning with a maximum block-size of 32×32
pels is performed and the best combination of both block-
sizes and class labels which minimizes the cost function J
is determined. The number of bits required for the above
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Figure 4: Example of quadtree-based variable block-size
partitioning.

quadtree flags is also added to Bside when the cost function
is computed. This quadtree decision process is iteratively
performed in the optimization procedures described in the
previous section. To be exact, it is carried out instead of the
procedure (5) for every iteration.

5. EXPERIMENTAL RESULTS

To evaluate practical coding performance of the proposed
scheme, we have developed a software-based codec using
C language and tested it for several monochrome images,
all of which are digitized in 8-bit grayscale. Table 1 lists
coding rates of our coding schemes. ‘VBS & new-cost’
means the proposed scheme which employs both the variable
block-size adaptive prediction and the new cost function
defined by Eq. (7). ‘FBS & new-cost’ employs the same
cost function but block-size is fixed to 8×8 pels. And
‘FBS’ is our previous scheme [6] where the amount of
side information (Bside) is omitted in the cost function and
the fixed block-size of 8×8 pels is used for the adaptive
prediction. The number of predictors (M) and prediction
order (K) used in the experiments are shown in the table as
well. These values have been preliminarily determined for
each image size so that they give better results in average.
The table shows that coding rates of ‘VBS & new-cost’ are
0.004–0.070 and 0.029–0.139 bits/pel lower than those of
‘FBS & new-cost’ and ‘FBS’, respectively. Table 2 reports

Table 1: Comparison of coding rates (bits/pel).

Image Size, M,K VBS &
new-cost

FBS &
new-cost FBS [6]

Camera 256×256,
M =20,
K =30

3.949 3.989 4.013
Couple 3.388 3.403 3.429
Noisesquare 5.270 5.288 5.312
Airplane

512×512,
M =41,
K =42

3.591 3.600 3.622
Baboon 5.663 5.667 5.698
Lena 4.280 4.288 4.314
Lennagrey 3.889 3.900 3.924
Peppers 4.199 4.207 4.233
Shapes 0.685 0.755 0.824
Balloon

720×576,
M =56,
K =72

2.579 2.584 2.608
Barb 3.815 3.827 3.856
Barb2 4.216 4.224 4.258
Goldhill 4.207 4.215 4.245
Average 3.826 3.842 3.872

Table 2: Detailed coding results for the ‘Camera’ (bits).

Item VBS &
new-cost

FBS &
new-cost FBS [6]

Coefficients 2160 2304 3464
Thresholds 808 848 1264
Class labels 4304 2696 3272
Block-size 960 – –
Shape parameters 64 64 64
Prediction errors 250424 255384 254832
Others 110 110 110
Total 258830 261406 263006



Figure 5: Result of variable block-size
partitioning (Camera).

Table 3: Performance comparison with the state-of-the-art lossless coding
schemes (bits/pel).

Image VBS &
new-cost BMF TMW Glicbawls JPEG-LS JPEG 2000

Camera 3.949 4.060 4.098 4.208 4.314 4.535
Couple 3.388 3.448 3.446 3.543 3.699 3.915
Noisesquare 5.270 5.298 5.542 5.415 5.683 5.634
Airplane 3.591 3.602 3.601 3.668 3.817 4.013
Baboon 5.663 5.714 5.738 5.666 6.037 6.107
Lena 4.280 4.317 4.300 4.295 4.607 4.684
Lennagrey 3.889 3.929 3.908 3.901 4.238 4.303
Peppers 4.199 4.241 4.251 4.246 4.513 4.629
Shapes 0.685 0.730 0.740 2.291 1.214 1.926
Balloon 2.579 2.649 2.649 2.640 2.904 3.031
Barb 3.815 3.959 4.084 3.916 4.691 4.600
Barb2 4.216 4.276 4.378 4.318 4.686 4.789
Goldhill 4.207 4.238 4.266 4.276 4.477 4.603
Average 3.826 3.882 3.923 4.030 4.222 4.367

breakdowns of the number of coding bits for the ‘Camera’
image. It indicates that use of the new cost function can
remarkably reduce the amount of side information, while
it slightly increases the number of coding bits required for
the prediction errors. In addition, introduction of variable
block-size adaptive prediction can provide a better trade-off
between the number of coding bits required for the prediction
errors and the side information. From the result of variable
block-size partitioning shown in Figure 5, we can confirm
that appropriate block-sizes according to complexity of local
image structures are obtained.

Table 3 also lists coding rates of the proposed scheme
‘VBS & new-cost’ together with those of the state-of-
the-art lossless coding schemes: BMF [10], TMW [3],
Glicbawls [2], JPEG-LS [11] and JPEG 2000 [12]. It
is demonstrated that the proposed scheme attains the best
coding performance for all tested images and its coding rates
are 6–44 % lower than those of the JPEG-LS standard.

6. CONCLUSIONS

We have proposed an efficient lossless image coding scheme
using variable block-size adaptive prediction. In order
to improve coding efficiency, several coding parameters
including the block-size are optimized for each image so that
a cost function which is defined as the sum of coding bits for
prediction errors and side information can have a minimum.
Experimental results demonstrate that the proposed coding
scheme outperforms the other state-of-the-art schemes in
terms of coding efficiency.

Due to the nature of forward-adaptive prediction, the
proposed scheme requires relatively large amount of compu-
tation at the encoder side but is practically fast in decoding
process. When the size of images is 512×512 pels, for
example, our codec takes 10–25 minutes for encoding and at
most 0.2 seconds for decoding on a computer with the 3.06
GHz Xeon processor. This feature is useful for client/server
applications where offline encoding at the server side is
allowable.
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