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ABSTRACT
In this article we consider the Data Projection Method
(DPM), which constitutes a simple and reliable means for
adaptively estimating and tracking subspaces. Specifically
we propose a fast and numerically robust implementation of
DPM. Existing schemes can track subspaces corresponding
either to the largest or the smallest singular values. DPM,
on the other hand, with a simple change of sign in its step
size, can switch from one subspace type to the other. Our
fast implementation of DPM preserves the simple structure
of the original DPM having also a considerably lower com-
putational complexity. The proposed version provides or-
thonormal vector estimates of the subspace basis which are
numerically stable. In other words, our scheme does not ac-
cumulate roundoff errors and therefore preserves orthonor-
mality in its estimates. In fact, our scheme constitutes the
only numerically stable, low complexity, algorithm for track-
ing subspaces corresponding to the smallest singular values.
In the case of tracking subspaces corresponding to the largest
singular values, our scheme exhibits the fastest convergence-
towards-orthonormality among all other subspace tracking
algorithms of similar complexity.

1. INTRODUCTION

1.1 Problem definition

In a typical application of subspace-based adaptive signal
processing, we are receiving, sequentially, observation vec-
tors y(n) ∈ R

N with covariance matrix R = E{y(n)yt (n)}
and singular value decomposition of the form (SVD)

R = [Us Un]

[

Λs 0
0 Λn

]

[Us Un]
t , (1)

with Λs = diag{l1, . . . ,lLs
}, Λn = diag{lLs+1, . . . ,lN},

where l1 ≥ l2 ≥ ·· · ≥ lN ≥ 0 are the singular values of
R. The diagonal matrices Λs,Λn therefore contain the Ls
largest and the Ln = N −Ls smallest singular values of R re-
spectively; while Us,Un contain the corresponding singular
vectors. The matrices Us,Un are both orthonormal, consti-
tuting orthonormal bases for the corresponding subspaces.
The problem we would like to solve is now the following:
Assuming that y(n) is available sequentially, we would
like to provide adaptive estimates either for Us or Un.

Perhaps the most common case encountered in practice
corresponds to the following data model

y(n) = x(n)+w(n), (2)

where x(n) is a sequence of vectors of length N lying in
an Ls-dimensional linear subspace and w(n) are i.i.d. white

noise vectors with independent elements. In this case the
SVD in (1) takes the special form

R = [Us Un]

[

Ds +s 2ILs
0

0 s 2ILn

]

[Us Un]
t , (3)

where IK denotes the identity matrix of size K;
E{x(n)xt (n)} = UsDsU

t
s is the SVD of the covari-

ance matrix of x(n); s 2 the noise power and Ln = N − Ls.
Matrix Us is then said to span the signal subspace whereas
Un the noise subspace.

From now on, with a slight abuse of notation, we will call
the subspace Us corresponding to the largest singular values
“the signal subspace” and the subspace Un corresponding to
the smallest singular values “the noise subspace”, keeping of
course in mind that these names are correct only in the case
of the model defined in (2).

1.2 Literature review

In order to avoid the excessively high computational com-
plexity O(N3) needed by the direct SVD, alternative schemes
requiring less operations were developed. If L denotes the
rank of the subspace we are interested in, algorithms requir-
ing a wide variety of complexities have already been pro-
posed in the literature. Since, usually, L � N, we classify
the schemes requiring O(N2L) or O(N2) operations as high
complexity; algorithms with complexity O(NL2) as medium
complexity; and finally methods with O(NL) operations as
low complexity (the latter schemes are also known in the lit-
erature as fast subspace tracking algorithms). Due to space
limitation, we mainly emphasize here the low complexity
O(NL) class. An exhaustive literature review addressing also
the other two classes can be found in [1, Ch. 2], while [2]
constitutes an excellent review of the literature up to 1990.

The great majority of articles addressing the problem of
subspace tracking focus mainly on signal subspace, while
the literature intended for the noise subspace is unfortunately
very limited. Starting with the former, let us first introduce
two methods coming from the medium complexity O(NL2)
class. The Data Projection Method (DPM) [3] will serve as
the basis for the novel fast algorithmic scheme we are going
to develop and will be introduced in detail in the next sec-
tion. The most popular algorithm of the medium complexity
class was proposed by Karasalo [4]. Karasalo’s algorithm
offers the best performance to cost ratio [2] and thus serves
as a point of reference for all subsequent low complexity
O(NL) techniques. Its overall complexity is O(NL2 + L3),
with the L3 part coming from the need to perform an SVD on
an (L+1)× (L+2) matrix.

Low complexity subspace tracking schemes are clearly
very attractive since they can lend themselves to real-time



processing. The Projection Approximation Subspace Track-
ing (PAST) algorithm is a well known approach for signal
subspace tracking proposed in [5]. The main advantage of
this O(NL) scheme is its simple structure having a single pa-
rameter to be specified. However the estimates offered by
this method are not orthonormal. The next two algorithms
of interest are MALASE [6] and PROTEUS-2 [7]. Both al-
gorithms have a rather complicated structure with the former
having four parameters to be specified and the latter just one.
The two algorithms provide orthonormal estimates for the
subspace basis. The final algorithm is the Low Rank Adap-
tive Filter (LORAF) proposed in [8]. This algorithm has also
a very difficult structure and exhibits a very sensitive behav-
ior as far as orthonormality of the estimates is concerned.

When we refer to noise subspace tracking, low complex-
ity O(NL) schemes are either unstable (they diverge) [9]
(modification of PAST); or numerically nonrobust [10, 11,
12], that is, they lose orthonormality due to round-off er-
ror accumulation, a fact that eventually leads to divergence.
From the latter three cases, the FRANS algorithm proposed
in [12] has an overall best performance which, in the case
of noise subspace tracking, as was said, is still numerically
unstable.

2. FAST DPM

2.1 Adaptive orthogonal iteration

If R is a non-negative definite matrix and we are interested
in computing a subspace basis UL of rank L corresponding
either to the signal or to the noise subspace, then there exists
a very simple iterative scheme from Numerical Analysis that
can perform this task. The method, known as orthogonal
iteration [13], has the following variant that is suitable for
our problem of interest:

UL(n) = orthonormalize{(I±mR)UL(n−1)}, (4)

where m > 0 is a “small” scalar parameter (step size); UL(n)
is the estimate of the subspace basis at the n-th iteration; fi-
nally the “+” sign generates estimates for the signal subspace
whereas the “−” for the noise subspace.

It can be shown that convergence of this iterative scheme
is exponential at a rate which is approximately equal to
−m(lL − lL+1) in the case of the signal subspace and
−m(lN−L −lN−L+1) in the case of the noise subspace [13].

When matrix R is unknown and, instead, we have the
observed data vector sequence y(n), we can replace R in (4)
with an adaptive estimate R(n) that satisfies E{R(n)} = R.
This leads to the adaptive orthogonal iteration algorithm

UL(n) = orthonormalize{(I±mR(n))UL(n−1)}. (5)

Clearly depending on the choice of R(n) we can obtain dif-
ferent subspace tracking algorithms.

2.2 The DPM and the Fast DPM algorithm

The simplest selection for R(n) is the instantaneous estimate
of the covariance matrix, that is, R(n) = y(n)yt (n) which
gives rise to the DPM algorithm [5]

UL(n) = orthonormalize{(I±my(n)yt(n))UL(n−1)},
(6)

where orthonormalization is performed using Gram-
Schmidt. Due to this latter requirement the overall computa-
tional complexity of DPM becomes O(NL2).

Our main contribution consists in offering an alternative
orthonormalization process, which reduces the complexity to
the desired O(NL) level. The algorithm we propose is the
following:

r(n) = Ut
L(n−1)y(n) (7)

T(n) = UL(n−1)±
m̄

‖y(n)‖2 y(n)rt (n) (8)

a(n) = r(n)−‖r(n)‖e1 (9)

Z(n) = T(n)−
2

‖a(n)‖2 [T(n)a(n)]at (n) (10)

UL(n) = normalize{Z(n)}, (11)

where e1 = [10 · · ·0]t . The first two equations correspond
to the part (I± my(n)yt (n))UL(n− 1) of the original DPM
with the only difference being the use of a normalized
step size m = m̄/‖y(n)‖2; Relations (9)-(11) replace the or-
thonormalization process of the original algorithm. We rec-
ognize in (10) the use of the Householder transformation
I− 2

‖a(n)‖2 a(n)at(n) which is crucial for the orthonormaliza-
tion process. Finally, with the term “normalize” we simply
mean the normalization of each column of the matrix Z(n);
operation that requires only O(NL) computations. This re-
duces the overall complexity to O(NL), thus gaining an order
of magnitude as compared to the original DPM algorithm.

2.3 Numerical stability

Our Fast DPM (FDPM) version, depicted in (7)-(11), as is
the case with all subspace tracking algorithms belonging to
the low complexity class O(NL), provides orthonormal esti-
mates if it is initialized with an orthonormal matrix. If for
some reason orthonormality is lost, or the adaptation is ini-
tialized with a matrix that is not orthonormal, then the algo-
rithm converges towards an orthonormal matrix. This should
be compared to the original DPM algorithm where orthonor-
mality is assured at every time step due to Gram-Schmidt.
Regarding convergence towards orthonormality we have the
following important theorem:

Theorem 1 The FDPM algorithm, for sufficiently small step
size m , has an exponential convergence rate towards or-
thonormality which is of the form c1 +mc2 +o(m), with c1,c2
independent of m and c1 < 0.

Proof: The proof can be found in [14].
�

As a consequence of Theorem 1 we have that the or-
thonormality error power

eo(n) = E{‖Ut
L(n)UL(n)− IL‖

2
F}, (12)

where ‖·‖F stands for the Frobenius norm, in FDPM tends to
zero as O(e(c1+mc2)n). Due to the fact that c1 is strictly nega-
tive we have a guaranteed convergence towards zero, even if
the step size m is zero. In other words the convergence rate
towards orthonormality, for our FDPM scheme, is practically
insensitive to changes in the step size m (for small m).

As we are going to see in the simulations section, the pre-
vious property does not hold for all other subspace tracking



schemes of similar complexity. In particular, all low com-
plexity O(NL) algorithms, as well as Karasalo’s scheme (of
complexity O(NL2)), have a convergence rate towards or-
thonormality which is of the form mc+o(m) with c < 0. This
suggests that any drastic change in the step size of the corre-
sponding algorithm induces an equivalent drastic change in
the convergence speed towards orthonormality.

2.4 Behavior of the estimates UL(n)

The fact that FDPM does not produce exactly orthonormal
estimates (unless it is initialized with such a matrix) is not
very crucial. The reason is that orthonormality is reached
well before the estimates UL(n) converge to the exact sub-
space basis UL. We have the following lemma regarding this
point:

Lemma 1 Consider the DPM adaptation described in (6).
Then its mean trajectory satisfies the following iteration

E{UL(n)} ≈ orthonormalize{(I±mR)E{UL(n−1)}}.
(13)

Proof: The proof makes use of the Independence Assump-
tion; details can be found in [14].

�

Lemma 1 suggests that the mean estimates E{UL(n)} of
DPM (and therefore FDPM) satisfy the orthogonal iteration
defined in (4) thus, according to the discussion in Subsec-
tion 2.1, we conclude that UL(n) converges in the mean to
the exact UL at an exponential rate of the form of mc+o(m),
where c < 0. Comparing this rate to the one we had for or-
thonormality (i.e. c1 +mc2), we conclude that for sufficiently
small step size m we have c1 + mc2 � mc, suggesting that
FDPM converges to an orthonormal matrix well before the
algorithm converges to its steady state.

In adaptive algorithms another quantity that is of primal
importance is the steady state estimation error power. The
estimation error power at time n is defined as

ep(n) = E{‖UL(n)Ut
L(n)−ULU

t
L‖

2
F}. (14)

In other words, we measure the error power between the sub-
space projection operators UL(n)Ut

L(n) and ULU
t
L. It is

quite fortunate that we can find a closed form expression for
the limiting value of this quantity.

Theorem 2 Consider the DPM adaptation defined in (6) and
let l1, . . . ,lN be the singular values of the data covariance
matrix R = E{y(n)yt (n)}, then in the case of estimating the
signal subspace of dimension L (using the “+” sign) we have
that

lim
n→¥

E{‖UL(n)Ut
L(n)−ULU

t
L‖

2
F} = m

L

å
i=1

N

å
j=L+1

lil j

li −l j
,

(15)
whereas in the case of the noise subspace of dimension L
(using the “−” sign) it becomes

lim
n→¥

E{‖UL(n)Ut
L(n)−ULU

t
L‖

2
F} =m

N−L

å
i=1

N

å
j=N−L+1

lil j

li −l j
.

(16)

Proof: The proof can be found in [14].
�

3. SIMULATION RESULTS

In this section we present several simulations in order to ver-
ify the validity of our theoretical developments of the previ-
ous sections. We consider the signal plus noise model of (2)
with N = 8 where the random signal x(n) lies on an L = 4 di-
mensional linear subspace. We assume that the singular val-
ues of the signal subspace are Ds = diag{250,180,120,60}
and that the noise is white, Gaussian, with variance s 2. All
subsequent graphs are the result of averaging 100 indepen-
dent runs.

3.1 Signal subspace tracking

We compare FDPM against the following O(NL) schemes:
PAST, PROTEUS-2, MALASE, LORAF-3; and also the
more computationally demanding version of Karasalo of
complexity O(NL2). Fig. 1 depicts a typical case of the rel-
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Figure 1: Performance of the signal subspace tracking
schemes.
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Figure 2: Deviation from orthonormality of the signal sub-
space tracking schemes.

ative performance of the competing schemes. We plot the
projection estimation error power as defined in (14). The
noise variance is selected s 2 = 30 and at iteration 1500 we
apply an abrupt change to the exact matrix Us, preserving
its orthonormal structure, in order to observe the tracking ca-
pabilities of all algorithms. FDPM exhibits an overall bet-
ter performance than its O(NL) rivals, following at the same
time very closely Karasalo’s O(NL2) method.

In Fig. 2 we plot the orthonormality error power, as de-
fined in (12), for FDPM, FRANS [12], MALASE, LORAF-3
and Karasalo’s algorithm (PAST does not provide orthonor-



mal estimates whereas PROTEUS-2 has an extremely slow
convergence). At iteration n = 1000 we change abruptly
UL(1000) into a non-orthonormal matrix in order to observe
the convergence towards orthonormality. We run each algo-
rithm with two drastically different values of its correspond-
ing step size, namely m (solid line) and m

10 (dashed line). We
can see that, except LORAF-3, all algorithms practically at-
tain orthonormality within machine accuracy level. FDPM is
by far the fastest converging. The interesting point however
is that the convergence speed of FDPM changes only slightly
with the drastic change in its step size. All other algorithms
exhibit a significantly reduced convergence speed when the
smaller step size is employed, thus corroborating our conclu-
sions presented in Subsection 2.3.

3.2 Noise subspace tracking

The algorithms we compare here are the DPM (requiring
O(NL2) operations) the FRANS algorithm [12] and finally
our FDPM version. The signal model is exactly as in the pre-
vious subsection therefore the noise subspace is of rank L = 4
and has a multiple singular value equal to s 2 which we select
equal to 1. In order to demonstrate the numerical stability of
FDPM and the numerical instability of FRANS, we perform
simulations similar to the last example of the previous sub-
section. Namely, at iteration 1500 we replace the estimate
UL(1500) with a non-orthonormal matrix to examine again
convergence towards orthonormality.
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Figure 3: Performance of the noise subspace tracking
schemes.
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Figure 4: Deviation from orthonormality of the noise sub-
space tracking schemes.

Fig. 3 depicts the projection estimation error power,

while Fig. 4 the corresponding orthonormality error power
for exactly the same simulation. We can see that FDPM fol-
lows closely DPM and very quickly recovers orthonormal-
ity (DPM orthonormalizes at every step). FRANS, on the
other hand, gradually loses orthonormality by accumulating
round-off errors, as we can verify by the increasing line in
Fig. 4 until time 1500. If at some point FRANS has a non-
orthonormal estimate then it becomes completely unstable,
generating meaningless subspace estimates. This is evident
from Fig. 3 the part after time 1500.

4. CONCLUSION

In this work, we have considered the problem of adaptive
subspace tracking. Our contribution consists in developing
a fast, numerically stable orthonormalization technique for
the DPM algorithm [3] reducing its overall complexity from
O(NL2) to O(NL). For noise subspace tracking our scheme
is the only O(NL) complexity algorithm that is numerically
stable achieving an orthonormality error within machine ac-
curacy. Our algorithmic scheme has a very simple structure
and exhibits the fastest convergence-towards-orthonormality
speed among all existing O(NL) subspace tracking algo-
rithms.
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