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ABSTRACT

This paper considers the performance penalty of a blind,
compared to a non-blind, separation technique of a MIMO-
FIR channel. In the blind method the mixing filters are first
identified, while they are assumed to be known in the non-
blind case. The blind system identification is performed us-
ing a recently proposed method based on cumulant subspace
decomposition. Separation is then achieved by the FIR part
of the mixing system inverse, which minimizes the cross-
channel power. The performance penalty due to blindness is
investigated for the case when the channel order is underes-
timated. Results of average residual cross-channel power of
the wireless COST207 channel model are included.

1. INTRODUCTION

Blind source separation techniques in wireless communica-
tions have been under active research due to the achievable
gains in system performance and capacity. In a commer-
cial cellular communication system there will be different
types of interference, from multiuser interference in a sin-
gle cell to interoperator interference. Blind source sepa-
ration (BSS) can be used to lower the impact of interfer-
ence on transmission quality as well as increase the capac-
ity of the system in the uplink, [1, chap. 8.8]. Much of
the work in the area of BSS addresses the case of instanta-
neous mixtures. However, in wireless communications mul-
tipath is usually present, which yields convolutive mixtures.
Also, only mixing with sufficiently narrowband signals can
be approximated as instantaneous, while the more common
wideband case leads to convolutive mixtures, [1]. The work
herein focuses on the separation of multiple-input multiple-
output (MIMO) systems. The remaining ISI can be removed
by a number of blind single-channel equalization methods,
such as the constant modulus algorithm [2], [3], or by mini-
mization of any of the criteria proposed in [4].

In BSS with convolutive mixtures, the sources are sepa-
rated and equalized without knowledge of the mixing system
or usage of training sequences. Blind methods therefore of-
fer potential improvement in system capacity by eliminating
the training sequences which carry no information. However,
the performance of the separation is likely to degrade when
less a priori information is exploited. This work investigates
the cost of blindness in terms of residual cross-channel power
(that is, after separation).

Blind source separation methods can be divided into di-

rect and indirect approaches. In direct approaches the sep-
arated signals are extracted without explicit identification of
the mixing system, while indirect methods identify the un-
known channels before separation and equalization. A re-
cently proposed method for system identification, [5], ex-
ploits second order statistics and decorrelates subchannels of
the system. In [6], higher order cumulant matching is used
to estimate the channel and a Wiener filter separates the in-
dependent sources. Another recent method uses higher order
statistics and subspace analysis to identify the MIMO finite
impulse response (FIR) system assuming a known channel
order, [7]. This is the method considered further here.

This paper investigates the separation performance
degradation when the mixing system is blindly estimated and
compares it with the performance when the mixing system
is known (in terms of remaining cross-channel power). The
separation system is the FIR part of the mixing system in-
verse (known or estimated). The performance loss due to
blindness is also investigated when the channel order (that
must be known or estimated both for the blind identification
and the calculation of the separating system) is underesti-
mated, a common case of practical interest.

2. SYSTEM MODEL

We focus on MIMO-FIR systems as in Figure 1, where N
observed signals, x

�
n�, are the output of a linear channel
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The source signals, s
�
n�, are assumed to be statistically inde-

pendent and the number of source signals equals the number
of observed signals. The additive Gaussian noise, n

�
n�, is

zero-mean and the noise components are mutually indepen-
dent as well as independent of the source signals. The vectors
x
�
n�, s

�
n� and n

�
n� are length N vectors. The channel order of

the mixing system is denoted by � and the mixing matrix A
can be written as a matrix polynomial

A	z
 � A0 � z�1A1 � � � � � z�
�
A� (2)

where each matrix Ak is 	N �N
. The separating matrix B is
defined as

B 	z
 � B0 � z�1B1 � � � � � z�mBm (3)
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Figure 1: A MIMO-FIR system with N sources and N sen-
sors.

where each Bk is �N �N � and the separating filter is of order
m. The output of the system can be written as

y�z� � B �z� �A�z�s�z� � n�z�� (4)

and we define the overall system

H�z� � B �z�A �z� (5)

where

H�z� � H0 � z	1H1 � 
 
 
 � z	��
m�H ��
m� 
 (6)

3. SEPARATION WITH KNOWN MIXING MATRIX

Assuming that the mixing matrix A�z� is known or may be
estimated, we can find a separating matrix B�z� by taking the
FIR part of the inverse of A�z�. The inverse is given by

A	1 �z� � 1
det �A�z�� adj �A�z�� (7)

where adj ��� is the adjoint (the transposed cofactor matrix). If
the mixing filters in A�z� are FIR, the filters in adj �A�z�� as
well as the det �A�z�� will be FIR too. The adj �A�z�� in this
equation can be seen as the separating matrix and the factor
1�det�A�z�� as the IIR filter that equalizes all channels after
separation. Full separation can be achieved if the order of the
separating system is at least as large as the order of the filters
in adj �A�z��, that is, if

m � �N � 1�� 
 (8)

Remember that full separation still leaves ISI in each sepa-
rated source.

If the order of the separating system is lower than the
order of adj �A�z��, there will be residual cross-channel power
denoted by Q and defined as

Q � N

å
i�1

N

å
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j �� i

�

m

å
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��Hk �i j

�2 (9)

where �Hk �i j is element �i j� of Hk. If full separation can not
be achieved, we choose the filters of the separating system to
be the first m� 1 taps of the filters in adj �A�z��. This selection
of B minimizes the cross-channel power.

4. BLIND IDENTIFICATION BASED ON
CUMULANT SUBSPACE DECOMPOSITION

If the mixing matrix A is not known a priori it can be blindly
estimated from the observed signals by a recently proposed
method based on cumulant subspace decomposition, [7]. The
proposed algorithm can identify a MIMO-FIR system where� the source signals are independent, stationary, temporally

i.i.d. processes with zero-means and nonzero fourth-
order kurtosis� the channel noises n �n� are mutually independent zero-
mean Gaussian stationary processes and independent of
the source signals� the number of sensors are no less than the number of
sources� the channel order is the same for all sources� there exists a complex point z0 �� 0 such that A�z0� has
full column rank� the fourth-order kurtosis of all source signals have the
same sign.

In [7], some of these assumptions may be relaxed and com-
plemented by other conditions, but this is not considered in
the summary given here.

The main idea is to identify A�z� given only the observed
signals x �n� by employing the fourth-order cumulants. These
higher order statistics of x �n� give enough information to
identify the mixing filters up to an arbitrary scaling and per-
mutation and are also not affected by additive white Gaussian
noise. The MIMO cumulant subspace - joint diagonalization
(MIMOCS-JD) algorithm described in [7] is summarized in
three main steps.
1. A set of cumulant matrices containing the fourth-order

cumulants with fixed third and fourth argument are de-
fined and the nullspace of this set is estimated.

2. It is shown that a matrix containing the mixing parame-
ters is orthogonal to this nullspace. The estimated mixing
filters are obtained via the orthogonality principle.

3. Remaining ambiguities are reduced to scaling and per-
mutation by joint diagonalization of a set of matrices.
A number of simulation examples are given in [7]. For

example, the performance is shown for a case where the true
channel order is two, but overestimated to three and four.
As the authors point out, this algorithm (like other subspace
based algorithms) is sensitive to channel order overestima-
tion. However, the interesting case when the channel order is
underestimated is not investigated.

5. COST OF BLINDNESS

This paper investigates how sensitive the source separation is
to errors in the estimated mixing matrix Â. The measure of
performance used is residual cross-channel power defined in
(9). The non-blind case where a separation matrix B is calcu-
lated directly from the known mixing matrix A is compared
with the blind case where the mixing matrix is estimated to
Â using the blind identification method described in section
4. A separation matrix B̂ is calculated from Â and the cross-
channel power of the non-blind system B�z�A�z� is compared
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Figure 2: The cost of blindness is estimated by comparing a
blind system with a non-blind.

with the cross-channel power of the blind system B̂�z�A �z�,
Figure 2.

It is often the case in communications that the true chan-
nel order is higher than the channel order that is tractable
to assume for blind identification, [8]. Therefore, we herein
investigate the cost of blindness when the channel order is
underestimated (when �̂ � �), to give an understanding of the
robustness of the blind identification method to channel order
underestimation.

6. SIMULATION RESULTS

This section presents simulations to demonstrate the perfor-
mance of the blind versus the non-blind system (the cost of
blindness) when the channel order is underestimated. The
system model has two sources and two sensors and the chan-
nel order � is 6 for the four channels. The channels are ran-
domly generated based on a modified COST207 bad urban
wireless channel model [9], where the symbol rate has been
increased to give channels with an order of 6. The source sig-
nals are mutually independent, temporally i.i.d. QPSK sig-
nals and the channel noises are zero-mean, complex, additive
white Gaussian processes.

The MIMOCS-JD algorithm, [7], is used for identifica-
tion of the mixing system. In [7], the sample support used for
identifying channels of order 2 is 4 �000. With a higher chan-
nel order, there are more parameters in the cumulant matrix
that need to be estimated in the blind identification method.
A sample support of 70 �000 would keep the ratio of sam-
ples to parameters in the cumulant matrix constant, when the
order of the channels is 6. The channel is assumed to be con-
stant during the time needed to collect the samples. Other
parameters are the same as in [7]. The order of the separat-
ing system, m, is chosen equal to �̂, since this should give
perfect separation when there are 2 sources and 2 sensors,
see (8). The simulations are performed at an SNR of 20 dB.

Figure 3 shows the average cross-channel power, Q,
when �̂ is varied from 1 to the true channel order 6, for 200
different COST207 channels. The bars show Q� s �2, where
s is the standard deviation. As a comparison it can be noted
that the average cross-channel power of the mixing system,

Qmix � N

å
i�1

N

å
j�1
j �� i

�
å
k�0

��Ak�i j

�2 (10)

for these 200 channels was 17. As expected, there is a signif-
icant residual cross-channel power due to use of the blind
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Figure 3: Cross-channel power after non-blind and blind
source separation. The true channel order is 6 and 70 �000
samples are used for the blind identification. The bars show
Q � s �2, where s is the standard deviation.

technique and it also exhibits greater variance. However,
the blind method, which was originally introduced as need-
ing the exact channel order, in fact, is not very sensitive to
channel order underestimation for this class of mobile com-
munication channels. The cost, in terms of cross-channel
power difference between the blind and non-blind approach,
is almost constant when the channel order is underestimated.
The relative cost due to channel order underestimation is also
small compared to the cost of blindness, at least for reason-
ably good estimates of the channel order.

To further interpret the results, we define the cross-
channel power reduction, P, as the cross-channel power of
the mixing system over the residual cross-channel power af-
ter separation, that is,

P � Qmix

Q

 (11)

Figure 4 shows the separation gain in terms of cross-channel
power reduction. The last value for the non-blind case is
omitted since non-blind separation with the true channel or-
der is perfect, Q � 0, and the cross-channel power reduction
is infinite. This measure of separation performance demon-
strates more clearly the performance penalty due to blind-
ness. The cross-channel power reduction achieved by the
blind method does not vary much with estimated channel or-
der. Even if the estimated channel order is just half the true
(�̂ � 3), the cross-channel power reduction is almost as high
as we can possibly get using the blind method. The differ-
ence is less than 1 dB. This is again suggesting that the blind
method is not especially sensitive to channel order underes-
timation.

In practice, the channel may rarely be so slowly vary-
ing that it can be assumed to be constant for a support of
70 �000 samples. To shed some light on results applicable to
the small sample support case, Figure 5 shows the remaining
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Figure 4: Cross-channel power reduction achieved by blind
and non-blind source separation respectively. The last value
for the non-blind case is omitted since non-blind separation
with the true channel order is perfect and the cross-channel
power reduction is infinite.

cross-channel power having support of only 4 �000 samples.
With this short sample support the parameters of the cumu-
lant matrices in the blind method are not very accurately es-
timated for a high channel order, and the cost of blindness
increases with an increasing estimated channel order. For
this specific simulation a channel order of 5 gives the lowest
cross-channel power when the true channel order is 6. This
result suggests that channel order underestimation might give
lower cross-channel power in cases of limited sample sup-
port.

7. CONCLUSIONS

This work investigates the performance penalty of blind sep-
aration of a MIMO-FIR system for a class of wireless mo-
bile communication channels. Non-blind separation is used
in conjunction with a recently published method for blind
system identification to explore the performance degradation
due to blindness. Previous work on the blind method investi-
gates its sensitivity to channel order overestimation. Herein
the effects due to channel order underestimation are consid-
ered, which is important since some form of under-modeling
is often the case. Our simulations based on the COST207
channel model show the expected performance degradation
due to blindness. Interesting to note is that the performance
of the blind method is not very sensitive to channel order
underestimation. If the sample support is short, channel or-
der underestimation might even give a lower residual cross-
channel power in the blind case. This suggests that even if the
true channel order is known, blind identification with a lower
channel order than the true may increase the performance of
the communication system in terms of reduced cross-channel
power.
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Figure 5: Cross-channel power after non-blind and blind
source separation. The true channel order is 6 and 4 �000
samples are used for the blind identification.
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