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ABSTRACT 

To reliably and efficiently deliver media information to 
diverse clients over heterogeneous networks, the media in-
volved must be scalable. In this paper, a color quantization 
algorithm for generating scalable images is proposed based 
on a multiscale error diffusion framework. Images of lower 
resolutions are embedded in the outputs such that a simple 
downsampling process can extract images of any desirable 
resolutions. Images possessing this scalable property support 
transmission over the Internet which contains clients with 
different display resolutions, systems with different caching 
resources and networks with varying bandwidths and QoS 
capabilities.  

1. INTRODUCTION 

Color quantization [1-2] is widely used in many multi-
media applications to save data storage requirement, save 
transmission bandwidth and display images with a color dis-
play device that allows only a limited number of colors. 
When color quantization is performed, digital halftoning [3] 
would be helpful to improve the quality of the output by 
making use of the lowpass filtering property of human eyes. 
At the moment, the most popular halftoning method is error 
diffusion and several well-known error diffusion filters such 
as Floyd-Steinberg filter [4] are generally used to achieve the 
goal.  

When one delivers media information to diverse clients 
over heterogeneous networks, clients may support different 
display resolutions and systems may have different caching 
capabilities. In that case, it is desirable to make media infor-
mation scalable such that it can be delivered efficiently and 
reliability. Since color-quantized images are widely used in 
multimedia applications nowadays, it is desirable to make 
them scalable such that their downscaled versions can be 
obtained directly with the images through some simple op-
erations. 

The most straightforward approach to obtain a down-
scaled version of a halftoned color-quantized image on hand 
is downsampling. However, this approach does not work 
because such an image contains a lot of high frequency en-
ergy. Figure 1 shows the effect of directly downsampling 
such an image which is produced with a conventional color 
quantization algorithm[1] in which error diffusion is in-
volved. 

Two better approaches can be used to provide downscaled 
versions of a halftoned color-quantized image to a client over 

heterogeneous networks. The first one is to generate several 
scaled original color images of desired sizes, color-quantize 
each of them and store all of them in the server for future use. 
This is very memory-consuming since one has to store sev-
eral halftoned color-quantized versions of the original color 
image for one single application. The second approach is to 
make use of post-processing technique. In this approach, it is 
not necessary to generate a set of halftoned color-quantized 
images of various resolutions beforehand. Only one half-
toned color-quantized image is stored. To obtain a halftoned 
color-quantized image of desired size, the available halftoned 
color-quantized image is first restored to its original [5]  or 
lowpass filtered to remove the high frequency noise. The 
processed image is then downscaled and color-quantized 
again to produce the image of desirable resolution. This ap-
proach is computation-demanding since a sequence of image 
processing steps has to be carried out.  

In this paper, we proposed an efficient approach to gen-
erate a halftoned color-quantized image that can be displayed 
at several resolutions. It is generated in such a way that, 
when downsampling is performed, a halftoned color-
quantized image with a high quality rendition of the original 
color image at reduced resolution can result. With such a 
scalable property, the generated halftoned color-quantized 
image is also suitable for progressive transmission. The ad-
vantages of the proposed approach are obvious. First, the 
generated result does not require extra memory to store a set 
of halftoned color-quantized images of different resolutions. 
Besides, no postprocessing is required to produce the down-
scaled versions and hence no computational effort is required 
to generate this set of halftoned color-quantized images. 

2. A FRAMEWORK OF MULTISCALE ERROR 
DIFFUSION 

This Section presents a framework of multiscale error 
diffusion. In this proposed framework, color quantization is 
performed in YIQ color space so as to reduce the correlation 
among different color components. Another reason for doing 
so is that Euclidean distance in YIQ space matches HVS 
response more closely as compared with that in RGB space. 
This allows the color quantizer to select a visually more 
appropriate palette color with a given input. Without lose of 
generality, hereafter, we assume the color palette and the 
input image are defined in YIQ space. If they are not, color 
transformation will be required to transform their colors 
from their original domain to YIQ domain before color 
quantization. 



Let X  be a 24-bit NN ×  true-color image each pixel 
of which is represented as ),( jiX

r
= ( YjiX ),( , IjiX ),( , 

QjiX ),( ), where cjiX ),(  for },,{ QIYc∈  is the intensity 

value of the thc  primary color component of the thji ),(  
pixel of the image.  

The proposed algorithm is an iterative algorithm. Let U  
be an image which reports the current status of the image 
being processed at the beginning of a particular iteration. At 
each iteration, the algorithm first locates a pixel location 
based on the maximum energy guidance with an energy 
pyramid E associated with U . The details of the pyramid 
will be elaborated later. The selected pixel is then color-
quantized with a predefined set of colors (palette). The 
quantization error is diffused with a non-casual filter to 
neighboring pixels to update U . These procedures are re-
peated until all pixels are color-quantized. At the start of the 
first iteration, U  is initialized to be X .   

A.  Constructing energy pyramid E   

Let M be a mask of size NN ×  which defines which 
pixels have been color-quantized. Specifically, its element 
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has been color-quantized or else it is 1.  
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The energy pyramid E  associated with image U  is then 
constructed with { lE | Ll L,1,0= }, where lE  is the energy 

plane of matrix lU . The thji ),(  element of lE  is defined as  
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B. Searching the pixel for color quantization 

The location of a pixel to be color-quantized is deter-
mined via maximum energy guidance with energy pyramid 
E . The location is obtained by searching the energy pyra-
mid from the coarsest level 0E  to the finest level LE . Note 
that 0E  contains only one element 0

)0,0(E . 

Assume that we are now at position )),(,( jil which cor-

responds to the thji ),(  element of a particular level l . We 
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more than one position satisfies the criterion, one of them 
will be randomly selected.  

C. Color quantization and error diffusion 

Let )),(,( nmL  be the position that we finally reach at 
the finest level of the pyramid E  in the search and  

},2,1:ˆ{ ci NiC L== v  be the given color palette. 

),( nmU
r

=( YnmU ),( , InmU ),( , QnmU ),( ) is then color-

quantized. The best-matched color in the palette, say kv̂ , is 
selected based on the minimum Euclidean distance criterion 
in YIQ color space as follows.  
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’s neighborhood to update image U  with a non-
causal filter. In formulation, it is given as 
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spectively to avoid energy leakage. 

3. PROPOSED MULTISCALE MULTIRESOLUTION 
VECTOR ERROR DIFFUSION ALGORITHM 

With the framework presented in the previous Section, a 
color quantization algorithm for generating scalable color 
quantization images is proposed in this Section. 

 Consider the case that one wants to produce a color 
quantization result of a given image I  which embeds a set of 
color quantization results of downscaled versions of I . Let 



rI  be one of the downscaled versions of I . Without loss of 

generality, we assume that I  is of size NN ×  and rI  is of 

size )/( rsN × )/( rsN , where rs r
r |{2∈ =1, 2 … R; R<L= 

log2N} is a desirable scaling factor. The objective of the pro-
posed algorithm is to produce an output such that all rY  can 

be obtained by simply downsampling Y , where Y  and rY  

are, respectively, the color quantization results of I  and rI .  

Note I can be downscaled with any approach to ob-
tain rI , producing different results. In our proposed algo-

rithm, rI  is obtained by averaging I  as follows.  
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where r
cjiI ),(  and cjiI ),(  are, respectively, the thc  color 

components of the thji ),(  pixels of rI  and I . 

In the proposed algorithm, starting with Rr = , we itera-
tively generate rY  with rI  and then use rY  as a constraint 

to produce 1−rY  in the next iteration until Y  is eventually 

obtained. 
As selected by the user, RY  is of the lowest resolution 

to be supported in the scalable Y . There is no constraint to 
generate it and one can make use of the multiscale error dif-
fusion algorithm presented in Section 2 to generate it with 
X = RI . 

To obtain rY  with rI  for Rr <<0 , the same multis-

cale error diffusion algorithm presented in Section 2 can be 
used by embedding a constraint in the initialization stage. 
Suppose one has already obtained rY  with rI  and starts to 

produce 1−rY  with 1−rI .  At the start of the first iteration, 

after initializing U  to be X = 1−rI  , we force the downsam-

pled elements of 1−rY  to be  

r
cji

r
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1
)2,2( =−           for 1)/(,1,0, −= rsN,ji K   (8), 

where r
clkY ),(  is the thc  color component of the thlk ),(  

element of rY , and then diffuse the quantization error at 

positions ( ji 2,2 )’s with eqn.(6) to update U . Note assign-

ment (8) guarantees that rY  can be obtained by simply 

downsampling 1−rY . This completes the first iteration and 

the following iterations are carried out as usual as it is pre-
sented in Section 2 until 1−rY  is obtained.  

4. SIMULATION AND COMPARATIVE STUDY 

Simulation was carried out to evaluate the performance 
of the algorithm on a number of de facto standard 24-bit full 
color images. Each of them is of size 256×256. The proposed 
algorithm was applied to these images to obtain their corre-
sponding halftoned color quantization results. Color palettes 
of different size were used in the simulation. In the realiza-
tion of the proposed algorithm, parameter R  was selected to 
be 4. 

For comparison, halftoned color quantization results 
were also generated with some other CQ algorithms[1,6,7] 
and then downsampled to produce various downscaled ver-
sions. Unlike most color halftoning algorithms which are 
dedicated for printing applications, these evaluated algo-
rithms [1,6,7] are not straightforward extension of binary 
halftoning and are able to handle color quantization in which 
any arbitrary palettes can be used. Floyd-Steinberg filter [4] 
was used in the realization of [1].  

Table 1 shows the average S-CIELAB difference ( E∆ ) 
values [8] of the color quantization results of different algo-
rithms and their corresponding downscaled versions. The set 
of testing Images include Lenna, Baboon, Peppers, Fruits, 
Cycles, Airplane, Parrots, Caps, Windows and Pool. Our 
proposed algorithm is obviously better and the superiority is 
very significant when the scaling factor is large.  

 

Image 
Downsampled versions 

Algorithm Palette 
size Full-scale 

(256×256)* rs =2 
(128×128) * 

rs =4 
(64×64) *

rs =8 
(32×32) *

16 35.38 36.70 38.82 42.93 
32 26.85 28.85 32.13 37.41 
64 20.06 22.46 26.56 33.17 

Orchard [1]

128 16.27 19.06 23.75 30.87 
16 34.78 36.42 38.62 42.46 
32 26.84 28.84 32.14 37.59 
64 19.92 22.39 26.42 32.97 

Akarun [6] 

128 16.08 18.90 23.58 30.56 
16 37.38 38.63 40.15 43.59 
32 30.97 32.16 34.43 38.28 
64 24.51 25.85 28.54 33.18 

Özdemir [7]

128 22.37 23.55 26.35 30.68 
16 34.27 34.09 33.67 31.92 
32 26.27 26.24 26.18 24.42 
64 19.74 19.86 19.95 18.59 

Proposed 

128 16.09 16.38 16.60 15.27 
* image size 
Table 1 Average S-CIELAB difference E∆ of the simulation 

results 
 
Figures 1 and 2, respectively, show the results produced 

by Orchard’s algorithm [1] and the proposed algorithm. The 
palette used for producing Figures 1(a) and 2(a) is of size 32 



and was generated with median-cut algorithm [2]. One can 
see that the downscaled results of Figure 1(a) are very poor 
while those of Figures 2(a) can maintain the color feature of 
the image.  

5. CONCLUSION 

In this paper, we proposed a multiscale error diffusion 
framework for color quantization. Based on this framework, 
we proposed a color quantization algorithm which is able to 
produce scalable color-quantized images for delivering me-
dia information to diverse clients over heterogeneous net-
works reliably and efficiently. In particular, for any given 
image, this algorithm can produce a high-quality directional-
hysteresis-free output and simultaneously embed a set of 
color quantization results of the downscaled versions of the 
given image without any memory overhead. Images of desir-
able resolutions can be extracted by simply downsampling 
the output.  
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Figure 1. Color quantization result of Orchard’s algorithm 
[1]: (a) full-scale version and (b-c) downsampled versions. 
(b) rs =2 and (c) rs =4  
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Figure 2. Color quantization result of the proposed algo-
rithm: (a) full-scale version and (b-c) downsampled ver-
sions. (b) rs =2 and (c) rs =4  
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