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ABSTRACT

Support Vector Machines is a very attractive and useful tool
for classification and regression; however, since they rely on
subtle and complex algebraic notions of optimization theory,
lose their elegance and simplicity when implementation is
concerned. It has been shown that the SVM solution, for the
case of separate classes, corresponds to the minimum dis-
tance between the respective convex hulls. For the non-
separable case, this is true for the Reduced Convex Hulls
(RCH). In this paper a new geometric algorithm is pre-
sented, applied and compared with other non-geometric al-
gorithms for the non-separable case.

1. INTRODUCTION

Geometry provides a very intuitive background for the
understanding and the solution of many problems in the
fields of Pattern Recognition and Machine Learning, which,
in turn, play a decisive role in Signal and Image Processing.

Support Vector Machine (SVM) paradigm in pattern rec-
ognition presents a lot of advantages over other approaches
(e.g., [4], [10]), some of which are: 1) the assurance that
once a solution has been reached, it is the unique (global)
solution, 2) good generalization properties of the solution,
3) reduced number of tuning parameters and, last but not
least, 4) clear geometric intuition on the classification pro-
cedure.

The contribution of this work consists of the following:
1) It exploits the intrinsic geometric intuition to the full
extend, i.e., not only theoretically but also practically (lead-
ing to a novel algorithmic solution), in the context of classi-
fication through the SVM approach, 2) it provides, for the
first time, the theoretical background for a geometric solu-
tion of the non-separable (both linear and non-linear) classi-
fication problems with linear (1* degree) penalty factors, by
means of the reduction of the size of the convex hulls of the
training patterns, 3) it provides an easy way to relate each
class with a different penalty factor, i.e., to relate each class
with a different risk (weight), 4) it develops, for the first
time, an efficient algorithm for the computation of the
minimum distance between the RCHs and finally 5) it
opens the road for applying other geometric algorithms,
finding the closest pair of points between convex sets in
Hilbert spaces, for the non-separable SVM problem.

2. SUPPORT VECTOR MACHINES

Simply stated, a SVM finds the best separating (maximal
margin) hyperplane between the two classes of training
samples in the feature space, which leads to maximal gen-
eralization. The patterns in the original, low dimensional
space X', are mapped (®: X — H) in a high-dimensional
feature space 'H, which is a Reproducing Kernel Hilbert
Space (RKHS). It is not necessary to know the map itself
analytically, but only its kernel, i.e., the value of the inner
products of the mappings of all the samples
(k(x,x,)=(®(x),®(x,)) for all pairs of samples
x,,x, € X) [9]. Through this “kernel trick”, it is possible to
transform a nonlinear classification problem to a linear one,
but in a higher (maybe infinite) dimensional space.

Although some authors have presented the theoretical
background of the geometric properties of SVMs, exposed
thoroughly in [11], the main stream of solving methods
comes from the algebraic field (mainly decomposition).
One of the best representative algebraic algorithms with
respect to speed and ease of implementation, also present-
ing very good scalability properties, is the Sequential
Minimal Optimization (SMO) [8]. The geometric proper-
ties of learning [1] and specifically of SVMs in the feature
space, have been pointed out early enough, through the dual
representation (i.e., the convexity of each class and finding
the respective support hyperplanes that exhibit the maximal
margin) for the separable case [2] and also for the non-
separable case through the notion of the Reduced Convex
Hull (RCH) [3]. Actually, the geometric algorithms pre-
sented until now ([7], [S]) are suitable only for solving di-
rectly the separable case and indirectly the non-separable
case through the trick proposed in [6]. However, the latter
(artificially extending the dimension of the input space by
the number of training patterns) is equivalent to a quadratic
penalty factor and, besides the increase of complexity, due
to the artificial expansion of the dimension of the input
space, it has been reported that the generalization properties
of the resulting SVMs can be poor [7].

In this work, we support the notion of the RCH with the
sufficient mathematical background, so that to overcome
the combinatorial complexity problems inherent in RCH
constructs and, therefore, making it suitable for solving



efficiently the SVM problem, employing geometric argu-
ments.

3. REDUCED CONVEX HULLS (RCH)
The set of all convex combinations of points in some set
C, with the additional constraint that each coefficient a; is

upper-bounded by a non-negative number u <1 is called

the reduced convex hull of C and denoted R(C , y) :

(Cy {w w= z L 4%, x, €X, Z;a[zl,OSa,S,u}

In this way, the initially overlapping convex hulls, with a
suitable selection of the bound x , can be reduced so that to

become separable. Once separable, the theory and tools
developed for the separable case can be readily applied.
The algebraic proof is found in [3] and [2] and the geomet-
ricone in [11].

The effect of the value of bound & to the size of the
RCH is presented in Fig. 1.

Fig. 1. The RCHs R(P5,2/5) is shown — generated by 5 points (stars) and

having x=2/5 — to present the points that are candidates to be extreme (

marked by small squares). Each point in the RCH is labeled in order to
present the original points from which it has been constructed; the last
label is the one with the lowest coefficient.

In the sequel, we will prove some theorems and proposi-
tions that shed further intuition and usefulness to the RCH
notion and at the same time form the basis for the develop-
ment of the novel algorithm, proposed in this paper.

The main rationale of our methodology consists of the
following steps: 1) Any convex hull is defined by its ex-
treme points, 2) We prove that the extreme points of a RCH
are computed by a specific finite linear combination of the
points of the originally convex hull, 3) We prove that the
minimum projection of a RCH onto a certain direction is a
specific linear combination of the projections of its extreme
points. The respective proofs will only be sketched here due
to limited space.

S = {O, 1—|_l/y_| M, y} , Where I_I//JJ is the integral part
of the ratio 1/ .

Proof: The proof is rather lengthy, so suitable sketch of
it is presented here. In the case that =1 the theorem is

obviously true. For 0 < z <1 the theorem will be proved by
contradiction: Assuming that a point weR(C,u) is an
extreme point, with some coefficients not belonging in S, a
couple of other points w,,w, e R(C, ) is needed to be
found and then to be proved that w belongs to the line
segment [wl,wz] . But since two other points are needed, at

least two coefficients have to be found not belonging in S .
Therefore, the first aim is to prove, by contradiction, that
any point we R(C ,u) cannot have only one coefficient
not belonging in S . Afterwards, using these coefficients, it
is easy to construct a couple of points w;,w, (C,x), such

that w is the middle point of the line segment joining them.
O
Proposition 1: Each of the extreme points of a RCH

(C,u {w w= Z L 4%, xeX, Z;aizl, OSaIS,Lz}
is a reduced convex combination of m =[1/4| (distinct)
points of the original set X, where [1/4] is the smallest
integer for which it is [1/x]>1/u. Furthermore, if
Yu=[1/pu] then all a =u; otherwise,
i=l...,m-1and a,=1-|u|u.

Sketch of the Proof: Theorem 1 states that the only coef-
ficients through which a point from the original set X con-

a,=pn for

tributes to an extreme point of the RCH R(C, u) are either
p or 1—| 1/ | . Furthermore, the fact that only one coef-
ficient with value 1—|1/4 |4 >0 can be present, is proved

by contradiction. [

Theorem 2: The minimum projection of the extreme
points of a RCH

(C,u {w w= Zal X, x,€X, zk:a[zl, OSa,S,u}

i=l

in the direction p (setting /1:1—L1/ yJ 4 and

m=|1/u])is:
. ﬂZLSi, if 0<u and 1=0
. ,uz S +Aas,

where s :( plx, ) /||p|| and s, is an ordering, such that

ifO0<A<pu

Theorem 1: The extreme points of a RCH
R(C,u) {w w= z Lax, x, €X, z;a’. =1, 0<gq, S,u} s, <8, if p<q.0
. The effect of Theorem 2 is illustrated in Fig. 2.
have coefficients g,  belonging to the set



Proposition 2: A linearly non-separable SVM problem
can be transformed to a linearly separable one through the
use of RCHs (by a suitable selection of the reduction factor
u for each class) if and only if the centroids of the classes
do not coincide.

Proof: This is a direct consequence of Proposition 2,

found in [3]. O

Fig. 2. The minimum projection p of the RCH R(P3,3/5), generated

by 3 points and having x=3/5, onto the direction w, —w, belongs to the
point (01), which is calculated, according to Theorem 2, as the ordered
weighted sum of the projection of only [5/3]=2 points ((0) and (1)) of
the 3 initial points. The magnitude of the projection, in lengths of
[wy =) is (3/5)(xy | wy = w ) +(2/5) (%, | wy —w,) -

4. GEOMETRIC ALGORITHM FOR THE SVM

An iterative, geometric algorithm for solving the linearly
separable SVM problem has been presented recently in [5].
This algorithm is adapted here, with the mathematical tool-
box for RCHs presented above, to solve the non-separable
SVM problem and can be described by the following three
steps:

1. Initialization:
a. Set A==V |u, m =1/ ],
Ay =1=|1/p, |y, my=|1/p,| and secure that
w 2|1 and g, 21|,

b. Set the vectors w, and w, to be the centroids of
the corresponding convex hulls, ie., set
a, :1/|Il|, iel and g, :1/|12|, iel,.

2. Stopping Find the
2, =2 bx, b e{0,4,1}, Z;gl b =1
2, =2, b b {0, ZME b =1

such  that

condition: vector

(actually the coefficients 5,)

(m(z,,).m(z,,)) where

z, =

arg min
21, €R(X ).z, €R(X g 112)

<Z —W W—W>
1r 2271 2
A e R(X )
[, — o]

m(z,)=
Z, — W, W, =W,

M’ z, € R(Xza,uz)

[, =]
The quantity m(z,) actually represents the distance
of one of the closest points (w, or w,) from the clos-
est projection of the RCH of the other class, onto the
line defined by the points w, and w,.

If the

||w1 —w2||—m(zr)<g

condition
then the

£ -optimality

holds, vector

w=w,—w, and ¢=1/2 ("w1 ||2 =l ||2) defines the

£ -solution; otherwise go to step 3.
3. Adaptation: If z, =z, eR(X, 1), set w,™ =w,

and compute W' =gz, +(1-¢,)w, where
. <W1_W2’W1_er>\ .
¢, =min| 1, —————-, which  means
v, =2, )
a' =qb +(1-q,)a,, iel; otherwise, set

new

W =W

e

and compute W' =gz, + (1 - Q)Wz ,

W, W, _221'>\\
2
"Wz _er" )

means a;" =q,b,+(1-q,)a,, i € I,. Continue with

where ¢, = min[l, 0 ,  which

step 2.

The quantities to be calculated involve minimum projec-
tions of the RCHs onto w =w, —w, or inner products of the

RCH points presenting such minimum projections. There-
fore, the calculations are done efficiently after the applica-
tion of the mathematical background presented above.

This algorithm has almost the same complexity as the
Schlesinger — Kozinec one (the extra cost is the sort in each

step to find the least [1/4 | and [1/u, ] inner products,
plus the cost to evaluate the inner product (z,,z,)) and the

same caching scheme can be used, with only O(|I]|+|Iz|)

storage requirements.

5. RESULTS

Some representative results are included, concerning
only non-separable cases, since the separable cases work in
exactly the same way as the initial algorithm. The results
were compared with the SMO algorithm for the training
total run time and the number of kernel evaluations and
summarized in Table 1. The test cases were run in an Intel
Pentium 4 PC.

e Linear non-separable case: A 2-dimensional sample
space of 390 (Class A) and 395 (Class B) randomly



generated samples was used. Each sample attribute
ranged from -0.5 to 0.5 and the margin was -0.1 (nega-
tive margin indicates the overlapping between classes).
e Non-linear non-separable cash 2-dimensional sam-
ple space of 390 (Class A) and 395 (Class B) randomly
generated samples were used, based on the checkers’
board pattern. Each sample attribute ranged from -4 to
4 and the margin was -0.2. The kernel used was RBF
with o =1.8.

B (Y
- ¢ o 0

Fig. 1. Classification results for the non-linear non-separable case for
SMO (a) and RCH-SK (b) algorithms.

The resulting separating surfaces, (shown in Fig. 1 only
for the non-linear case), were very close for both methods
((a) SMO and (b) RCH-SK proposed here). The bold solid
line represents the separating hypersurface (value 0), the
thin solid lines correspond to values -0.5 and 0.5 and the
dashed thin lines to the values -1.0 and 1.0 respectively.
The circled patterns correspond to support vectors. The
computational time requirements (along with the parame-
ters used for each method) are shown in Table I, from
which the advantages of our new method are apparent.

Method Kernel Time Kernel Parameters
(sec) evalutions

SMO Linear 885.6 19459278  C=50, tol=0.001

w . 156.7 5453801 44 =1 =0.006,

£=0.0001
SMO RBF 641.5 10264378  C=10, tol=0.001
RCH- RBF -1 =003,
SK 179.5 3699596 ' 1°

£=0.07

Table I : Comparative results for the SMO algorithm with the algorithm
presented in this work (RCH-SK).

6. CONCLUSION

A new geometric algorithm for implementing a SVM
classifier has been presented. The algorithm computes the
minimum distance between the RCHs of the two classes. It
is the first time in the literature that such an algorithm is
presented for the non-separable classification task. Also, the
paper presented the proofs of new results concerning RCHs
and projections on a direction. These theorems were neces-
sary for the development of the new algorithm.
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