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ABSTRACT 
The Radial Basis Function method (RBF) can be used not only for 
reconstruction of a surface from scattered data but for reconstruc-
tion of damaged images, filling gaps and for restoring missing data 
in images, too. The basic idea of reconstruction algorithm with 
RBF and very interesting results from reconstruction of images 
damaged by noise are presented. Feasibility of the RBF method for 
image processing is demonstrated. 

1. INTRODUCTION 
One of the most interesting problems in image processing is how to 
reconstruct damaged or incomplete images as well as possible. This 
problem is referred to in many papers [1, 7]. The main question is: 
“What value was in a corrupted position and how can I restore it ?”. 
One of the conditions for solving this is to have as much informa-
tion as possible from the original image. Then methods exist that 
use this and tray to reconstruct information in gaps [1]. The amount 
of retained information from the original picture is very important 
and the quality of the result depends on it.  

The Radial Basis Function method (RBF) is based on the 
variational implicit functions principle and can be used for interpo-
lation of scattered data, see section 3 for details. The possibility of 
missing data restoration (image inpainting) by the RBF method was 
mentioned in Kojekine & Savchenko [8]. They used this method for 
surface retouching and marginally for image inpainting as well. 
They used compactly supported radial basis functions (CSRBF)[14] 
for reconstruction and used octree data structure for representation 
of the parts for reconstruction. The advantage of this method is that 
the linear system is sparse and can be solved easily [10]. The draw-
back of this approach is an error which can be obtained with an 
improper selection of the radius of support of the CSRBF functions 
see Fig. 11 and Table 2.  
In our work we address a global basis function for image recon-
struction and reconstruction with constant “window” size. A de-
scription of the method is presented in section 4. 

2. PROBLEM DEFINITION 

Let us assume that we have an image Ω with resolution M x N and 
pixel intensity is presented by the value h.  

 

c iΩ = Ω + Ω , c iΩ ∩ Ω = ∅ ,          (1) 

[ , ]p h x y= , Ω∈p ,          (2) 
0,..., 1x M= − , 0,..., 1y N= −  

 
Some pixels of the image Ω have incorrect values (missing or 
overwritten), see Fig. 1c. Thus the image Ω has two parts, one with 

correct pixel values cΩ  and the second with incorrect pixels values 

iΩ , Eq. 1. We would like to restore the original image. Let us 
assume that we can detect incorrect pixels, too. The “Lena” image 
[15] (Fig. 1a) corrupted with noise mask (Fig. 1b) was used for 
explanation of our approach.  
 

 
a  b  c 

FIG. 1. Original image, mask with corrupted pixels and the final 
image prepared for reconstruction. 

 
Note that the restoration of the original image is related to the scat-
tered data interpolation problem, as many points are not defined and 
we want to find a value for them. The mask was randomly generated 
with a normal noise distribution. 

3. RADIAL BASIS FUNCTIONS 
Let us describe the RBF method now. The RBF method may be 
used to interpolate a smooth function given by n points. The result-
ing RBF interpolating function is defined as [5]: 
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where ci = [ci
x, ci

y]T are coordinates, n is a number of input points 
(pixels), λi are unknown weights, x is a particular point, φ(||x-ci||) is 
a radial basis function, ||x-ci||=ri is the Euclidean distance of the 
point x and the given point ci., and P(x) is a polynomial of degree m 
depending on the choice of φ (m = 1 has been chosen). There are 
some popular choices for the basis function, e.g. the thin-plate spline 
φ(r) =r2*log(r), the Gaussian φ(r) = exp(-ξr2), the multiquadric 
φ(r) = √(r2+ξ2), biharmonic φ(r) = |r| and triharmonic φ(r) = |r|3 
splines, where ξ is a parameter [6]. For those functions the degree m 
of the polynomial P(x) can be chosen as m = 1 as well. 
As we have for all points ci associated value hi we have a linear 
system of equations Eq. 3. with unknowns λ1,…, λn,a,b,d. Natural 
additional constraints for the coefficients λi must be included, 



Eq. 4., to ensure orthogonality of a solution. These equations and 
constraints determine the linear system: 
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The polynomial P(x) in Eq. 3. ensures positive-definiteness of ma-
trix B, see [9]. Afterwards, the linear equation system Eq. 5. is 
solved and the solution vector with λ and a is known, the function 
f(x) can be evaluated for an arbitrary point x (a pixel position in our 
case), see [4, 9, 11, 12]. 

4. IMAGE RECONSTRUCTION 

We have given the corrupted image Ω, see Eq. 1, and we would like 
to restore part Ωi of the original image Ω. The algorithm for recon-
struction of incorrect pixels is based on a construction and solution 
of the linear equation system (Eq. 5.) for a part of the given image. 
The part of the image “window” is selected in “scan-line” manner. 
The proposed algorithm processes the k-neighborhood of current 
pixel p.  Note that in our case k is equal to 24, see Fig. 2.  

 

 
 

FIG. 2. Definition of the processing window for current pixel. 
 

The correct pixels are selected from the window. These pixels are 
used as an input for the RBF method. The RBF function was com-
puted and used to compute the value of the incorrect pixel. This is 
repeated for incorrect pixels values. The RBF function differs from 
case to case as in the window several pixels might be missing. Now 
we can specify the proposed approach written in pseudo code, see 
Algorithm 1. 
If there are too many incorrect pixel values in the specified window 
of the size 5 x 5 pixels, then the incorrect pixel is not restored and 
the algorithm continues, see Fig. 4 and Fig. 6. The incorrect pixels 
are restored in the next iteration. It is the first modification of the 
algorithm mentioned above.  
The second modification reconstruct the incorrect pixels in the 
scan-line algorithm and the direction of restoration is changed, see 
Fig. 5 and Fig. 7. 

 LoadImage(Ω); 
 DefineNeighborhood(5,5); 
 Repeat 
  For (i,j=1;i<=M,j<=N;i++,j++)  
  { 
    /* pixel [i,j] is not defined */ 
    if(Hole(i,j)){  
    K = SelectNeighborhoodOfPixel(i,j); 
    /* remove all incorrect pixels */ 
    DeleteHoles(K);   
    CreateSystemAndSolveIt(K); 
    Pixel[i,j] = ComputeValueFromSystem(i,j); 
  } 
 Until (all pixels reconstructed)  

ALGORITHM 1. 

 

5. RESULTS 
The LU factorization method was used for solving the linear system 
(Eq. 5.) of equations. The RBF functions used in our experiments 
are shown in Table 2. The LU factorization is stable but different 
methods can be used, too.  
 
5.1 Evaluation methods 
For evaluation of the results we used Mean Absolute Error (MAE) 
and Mean Square Error (MSE) methods defined by following crite-
rion:  
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where: Ω1 is the original image (without incorrect pixels), Ω2 is the 
reconstructed image and T is the number of all image pixels or the 
number of incorrect pixels, see Table 1. For k = 1 is Eq.6 MAE and 
for k =2 is it MSE. For the value Sk only a part of the image for 
evaluation was used (Fig. 3a) because in the nearest boundary of the 
image border an error is accumulated. For the visualization of the 
difference between the original image and the reconstructed image, 
see Fig. 3b and Fig. 3c. The problematic parts of the reconstruction 
can be seen very well on these pictures.  
 

 
a  b  c 

FIG. 3. The example of the selected area for S evaluation (a) and 
 the example of B/W differential image (b,c is negative of b). 

 
5.2. Scan-line algorithm 
We used several corrupted images for our experiments, only the 
“Lena” image [15] and “Mars” [16] examples are presented here. 
For results of the one side scan-line algorithm reconstruction of the 
corrupted image are presented on Fig. 4 and Fig. 6.  



 
a  b  c 

FIG. 4. The Lena image with 60% of incorrect pixels (a), intermedi-
ate step of the algorithm (b) and the result (c). 

 

 
a  b  c 

FIG. 5. The Lena image with 60% of incorrect pixels (a), intermedi-
ate step of  the algorithm (b) and the result of two side scan-line 

algorithm(c). 
 
For an evaluation of corrupted image with two sided scan-line 
method, see Fig. 5., less number of iterations is required. Fig. 5. and 
Fig. 7. present reconstructed images. Table 1. shows the statistical 
data. It can be seen that the reconstructed images are usually better 
as well.  Also number of iterations N is smaller. 
 

 
 

FIG. 6. The Mars image with 60% of incorrect pixels (top) and the 
result after reconstruction (bottom). 

 
The Table 1. presents results obtained for the case when only  60 % 
of pixels are left from the original image. This table shows the dif-
ference between one and the two side scan-line algorithm. 

  T �  Number 
of all pixels 

T �  Number of 
incorrect pixels 

 

Method IM S S2 S S2 N 
One-side Mars 6.72 169.28 11.14 280.30 248 

 Lena 4.28 92.63 6.99 151.43 55 
Two-side Mars 6.72 169.14 11.13 280.07 124 

 Lena 4.26 91.15 6.96 149.00 28 
 

TABLE 1. Results for 60% of incorrect pixels. 
 

 
 

FIG. 7. The result of two side scan-line algorithm. 
 
With the increasing number of incorrect pixels the values of S and 
S2 increase, too. In the case of the highest percentage of incorrect 
pixels in the window could happen that there are just few original 
pixels in the window and the matrix B can be singular. Therefore 
the pixel value of the incorrect pixel is computed in the next cycle. 
The graph in Fig. 8. shows how S error increases for different per-
centage of incorrect pixels.  

 

FIG. 8. The Lena and the Mars image S error comparison. 
 
You can see that for more than 90% of incorrect pixels the value S 
has an acceptable value and the result after the reconstruction is still 
good. The object at the image is still recognizable, see Fig. 9 and 
Fig. 10.  
 

 
 

FIG. 9. The result of 90% corrupted images reconstruction. 
 

 
 

FIG. 10. The Lena image with 90% of incorrect pixels (left) and the 
result after reconstruction (right). 

 



5.3. Different basis functions and the window size 
Finally we compared different basis functions in order to check the 
quality of the reconstruction. Results for different basis functions are 
summarized in Table 2. and Fig. 11. 

 
 Func. rr log2

 

3r  )14()1( 4 +− rr
CSRBF 

all pixels      S 3.19 3.21 4.11 
      S2 62.23 63.69 94.13 
corr.pixels      S 6.24 6.27 8.05 
      S2 121.72 124.56 184.10 
Figure  11a 11b 11c 

 

TABLE 2. Results obtained for different basis functions. 
 

 
a  b  c 

FIG. 11. Results from reconstruction with different basis function. 
 

6. CONCLUSION AND FUTURE WORK.  
It can be seen that the proposed method has a good property, see 
Fig. 12., where an error of our scan-line reconstruction method is 
presented. The problem is with edges. Sharp edges raise higher 
errors in the reconstructed image. Therefore the proposed method is 
less convenient for images with sharp edges. It is expected that this 
problem will be solved in future work and the resulting error of the 
reconstruction will be smaller as well. 
 

 
       a                        b                         c                      d  
FIG. 12. Sharp edges reconstruction: a) the original image,  

b) the corrupted image, c) the reconstructed image and  
d) is the differential image of a) and c). 

 
It can be seen, that the results obtained by RBF application are very 
good. The preliminary experiments also proved that the RBF inter-
polation and the presented approach can be used for inpainting prob-
lem solution as well [1]. 
The proposed method for image reconstruction could be helpful for 
restoration of old scratched images [8] or inpainted images [1]. 
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