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ABSTRACT
In this paper, we propose an approach to the blind separation-
deconvolution problem, based on the mutual information cri-
terion. Formulas for the quasi Newton algorithm are pro-
vided. More interesting results have been obtained in the
pure deconvolution case. By a clever parameterization of
the deconvoluting filter, the quasi Newton algorithm also be-
come particularly simple. Simulation results showing the
good performance of this algorithm are provided.

1. INTRODUCTION

This paper explores the use of the mutual information for the
blind separation and deconvolution of convolutive mixtures.
Specifically, K observed sequences {X1(t)}, . . .{XK(t)} are
related to K source sequences1 {S1(t)}, . . .{SK(t)} via linear
convolutions

X(t) =
∞

∑
u=−∞

A(u)S(t−u), (1)

where X(t) and S(t) denote the vectors with compo-
nents X1(t), . . . ,XK(t) and S1(t), . . . ,SK(t), respectively, and
{A(u)} is a sequence of square matrices. The goal is to re-
cover the sources from the observations and naturally this is
done through the use of a sepaarating filter

Y(t) =
∞

∑
u=−∞

B(u)X(t−u), (2)

where {B(u)} is a sequence of matrices to be determined.
The components Yk(t) of the vector Y(t) represent the recov-
ered sources and since no specific knowledge of the sources
is available (in a blind context), the idea is to exploit their
independence assumption and thus determine {B(u)} such
that the sequences {Y1(t)}, . . . ,{YK(t)} are as (mutually) in-
dependent as it is possible. This principle can only seper-
ate the sources up to a filtering, since replacing each of
the sequences {Y1(t)}, . . . ,{YK(t)} by a corresponding fil-
tered version would not destroy their independence. How-
ever, in the deconvolution problem, the sources are tempo-
rally independent and one may require that the sequences
{Y1(t)}, . . . ,{YK(t)} are also as temporally independent as it
is possible (beside being mutually independent), We call this
problem the blind separation-deconvolution problem.

A well known popular measure of dependence is the mu-
tual information criterion, which provide efficient separation

1we restrict ourselves the case where there are a same number of sources
as sensors, for simplicity

in the case of instantaneous mixtures [1]. Here, we shall
adopt as criterion the average mutual information

lim
L→∞

1
L

I[Yk(1), . . . ,Yk(L),k = 1, . . . ,K],

Yk(t) are the components of Y(t) defined in (2) and I(· · ·)
denotes the mutual information between the indicated ran-
dom variables. But it is well known that the mutual informa-
tion can be expressed in term of entropy: I(Z1, . . . ,ZK) =
∑

K
j=1 H(Z j)− H(Z1, . . . ,ZK) where Z1, . . . ,ZK are random

vectors and H(·) denotes the entropy (or joint entropy when
appropriate)2. Further, H[Y(1), . . . ,Y(L)]/L converges as
L → ∞ to entropy rate of the process {Y(t)} [2], denoted
by H[Y(·)]. Therefore the above criterion can be written as
∑

K
k=1 H[Yk(·)]−H[Y(·)]. But [3]

H[Y(·)] = H[X(·)]+
∫ 2π

0
log |detB(ω)|dω

2π
,

where B(ω) = ∑
∞
u=−∞ B(u)e−iωu. Note that for simplicity,

we have used the same symbol B both in {B(u)} to denote
the filter impulse response and in B(ω) to denote its fre-
quency response, the variable u (roman letter) and ω (Greek
letter) help to avoid the confusion. Finally, the criterion
equals, up to an additive constant

C(B) =
K

∑
k=1

H(Yk)−
∫ 2π

0
log |detB(eiω)|dω

2π
. (3)

Such criterion have been used in [4] (and in [5] but without
the determinant term) in the pure deconvolution case (K = 1).

2. THE EMPIRICAL CRITERION AND
ESTIMATING EQUATIONS

In practice, one has to replace the criterion C(B) with an
estimator and this is naturally done by replacing H(Yk) by
an entropy estimator Ĥ(Yk), such as the one proposed in [6].
As only a finite length record, X(0), . . . ,X(T − 1), say, is
observed while the definition (2) may require the knowledge
of the entire sequence {X(t)}, we shall extend periodically
the observation and thus redefine

Y(t) =
∞

∑
u=−∞

B(u)X(t−u mod T ). (4)

2The entropy of a random vector (or variable) Z with density pZ is de-
fined as −

∫
pZ(z) log pZ(z)dz, the joint entropy of several random vectors

(or variables) is the entropy of the vector obtained by stacking their compo-
nents



This yields a periodic sequence of period T and the entropy
estimator Ĥ(Yk) is computed in terms of Yk(0), . . . ,Yk(T −1).
We take as empirical criterion

Ĉ(B) =
K

∑
k=1

Ĥ(Yk)−
1
T

T−1

∑
n=0

logdetB
(2πn

T

)
. (5)

We now assume that the matrix sequence {B(u)} is pa-
rameterized by some parameter θ and we are interested in
the gradient and the criterion Ĉ(B).

It was shown in [3] that limε→0[H(Y +εZ)−H(Y )]/ε =
E[ψY (Y )Z] where ψY is the negative of the logarithmic
derivative of the density of Y , and is known as the score
function of Y . Thus, following [6] we estimate ψYk through
the partial derivative of Ĥ(Yk): ψ̂k[Yk(t)] = T ∂ Ĥ(Yk)/∂Yk(t).
Then denoting by ψ̂[Y(t)] the vector with components
ψ̂1[Y1(t)], . . . , ψ̂K [YK(t)], the gradient of ∑

K
k=1 Ĥ(Yk) equals

tr{T−1
∑

T−1
t=0 [∂Y(t)∂θµ ]ψ̂[Y(t)]T} where

∂Y(t)
∂θµ

=
∞

∑
u=−∞

∂B(u)
∂θµ

X(t−u mod T ). (6)

and T denotes the transpose. It follows that the gradient of
the criterion (5) equals

∑
u

tr
{

∂B(u)
∂θµ

1
T

T−1

∑
t=0

X(t−u mod T )ψ̂T[Y(t)]
}

− 1
T

T−1

∑
n=0

tr
{

∂B(2πn/T )
∂θµ

B
(2πn

T

)−1}
(7)

Alternatively, by the (discrete) Parseval equality

T−1

∑
t=0

∂Y(t)
∂θµ

ψ̂[Y(t)]T =
1
T

T−1

∑
n=0

d∂Y/∂θµ

(2πn
T

)
dT

ψ̂(Y)

(−2πn
T

)
where d∂Y/∂ µ(2πn/T ) = ∑

T−1
t=0 [∂Y(t)/∂θµ ]e−i2πnt/T , n =

0, . . . ,T −1, is the discrete Fourier transform of the sequence
∂Y(t)/∂θµ , . . . , ∂Y(T −1)/∂θµ and dψ̂(Y) is defined sim-
ilarly. Therefore, noting that by (6), d∂Y/∂θµ

(2πn/T ) =
[∂B(2πn/T )/∂θµ ]dX(2πn/T ) and by (4), dX(2πn/T ) =
B(2πn/T )−1dY(2πn/T ), one gets an alternative expression
for the gradient:

1
T

T−1

∑
n=0

tr
{

∂B(2πn/T )
∂θµ

B
(2πn

T

)−1[
2πIYψ̂(Y)

(2πn
T

)
−I

]}
.

(8)
where

IYψ̂(Y)

(2πn
T

)
=

1
2πT

dY

(2πn
T

)
dT

ψ̂(Y)

(
2π

T −n
T

)
(9)

is the cross periodogram between {Y(t)} and {ψ̂[Y(t)]}.
Setting the gradient to 0 one gets the estimating equations

and in the limit (T →∞) the theoretical estimating equations∫ 2π

0
tr
{

∂B(ω)
∂θµ

B(ω)−1[2π fY,ψ(Y)(ω)− I]
}dω

2π
= 0

where fYψ(Y)(ω)= (2π)−1
∑

∞
u=−∞ E{Y(u)ψ[Y(0)]T}e−iuω

is the cross spectral density between the processes {Y(t)}

and {ψ[Y(t)]}. This equation is satisfied if {B(u)} is a
separating-deconvoluting filter, that is if it yields sequences
{Yk(u)} which are temporally independent and mutually
independent. Indeed, in this case, the spectral density
fYψ(Y) is a constant diagonal matrix, which equals I/2π

since E[Ykψk(Yk)] = 1 (see for ex. [1]).

3. THE QUASI-NEWTON ALGORITHM

One may solve the estimating equation by the quasi-Newton
algorithm. This algorithm computes the solution of the equa-
tion l(θ) = 0 through the iteration θ (ν) 7→ θ (ν+1) = the so-
lution of the equation K(θ (ν))(θ (ν+1) − θ (ν)) = −l(θ (ν)),
where K(θ) is some approximation of the Jacobian ∂ l/∂θ

of the map θ 7→ l(θ).
In the present case, l(θ) is given by (7) or (8). To con-

struct K(θ), we shall treat the sequences {Y1(t)}, . . . ,{YK(t)}
as temporally independent and independent among them-
selves, which is justified (for most value of t which are not
near 0 or T −1), if θ is near the true parameter and T is large
enough.

The derivative of the first term in (7) can be splitted into
S1 +S2 +S3 where

S1 = tr
{

∑
u

∂ 2B(u)
∂θµ ∂θν

1
T

T−1

∑
t=0

X(t−u mod T )ψ̂T[Y(t)]
}

,

S2 = tr
{ 1

T

T−1

∑
t=0

∂Y(t)
∂θµ

∂YT(t)
∂θν

diag{ψ̂
′[Y(t)]}

}
′ denoting the derivative and diag{ψ̂ ′[Y(t)]} denoting the
diagonal matrix with diagonal elements ψ̂ ′

1[Y1(t)], . . . ,
ψ̂ ′

K [YK(t)], and

S3 = tr
{ 1

T

T−1

∑
t=0

∂Y(t)
∂θµ

∂ ψ̂T

∂θν

[Y(t)]
}

Consider first S1. Since ∂ 2B(u)/∂θµ ∂θν should
converge to zero quickly as u → ±∞, one may re-
strict oneself to small u. Then for large T one may
approximate T−1

∑
T−1
t=0 X(t − u mod T )ψ̂T[Y(t)] by

E{X(−u)ψT[Y(0)]} =
∫ 2π

0 B(ω)−1 fYψ(Y)(ω)e−iωudω .
Thus S1 equals approximately∫ 2π

0
tr
[

∂ 2B(ω)
∂θµ ∂θν

B(ω)−1 fYψ(Y)(ω)
]
dω.

By treating {Y1(t)}, . . . ,{YK(t)} as temporally independent
and independent among themselves, fYψ(Y)(ω) reduces to
I/(2π) Hence, S1 minus the derivative of the last term in (7)
can be approximated by∫ 2π

0
tr
[

∂B(ω)
∂θµ

B(ω)−1 ∂B(ω)
∂θν

B(ω)−1
]dω

2π
.

Consider now S2. Let {B†(u)} be the inverse sequence
(in the convolution sense) of {B(u)}, then by (4) X(t mod
T ) = ∑u B†(u)Y(t − u). Hence by (6) ∂Y(t)/∂θµ =
∑u Cµ(u)Y(t − u) where Cµ(u) = ∑v[∂B(v)/∂θµ ]B†(u−
v). Thus S2 can be written as the trace of

∑
u

∑
v

1
T

T−1

∑
t=0

Cµ(u)Y(t−u)YT(t− v)CT
ν(v)diag{ψ̂

′[Y(t)]},



As before, on may restrict oneself to small u and v. Then
for large T , one may approximate T−1

∑
T−1
t=1 Yj(t − u)Yl(t −

v)ψ ′
k[Yk(t)] by 0 if (u, j) 6= (v, l), by EY 2

j Eψ ′
k(Y ) if (u, j) =

(v, l) 6= (0,k), and by EY 2
k Eψ ′

k(Y )+cov[Y 2
1 ψ ′

k(Yk)] if u = v =
0 and j = l = k. With these approximations, a somewhat
tedious algebra yields

S2 ≈
K

∑
j,k=1

∑
u

EY 2
j Eψ

′
k(Yk)Cµ,k j(u)Cν ,k j(u)+

K

∑
k=1

Cµ,kk(0)Cν ,kk(0) cov[Y 2
k ,ψ ′(Yk)],

Cµ, jk(u) denoting the general element of Cµ(u). By the Par-
seval equality, one may rewrite the first term in the above
right hand side as∫ 2π

0

K

∑
j,k=1

EY 2
j Eψ

′
k(Yk)×[

∂B(ω)
∂θµ

B(ω)−1
]

k j

[
∂B(−ω)

∂θν

B(−ω)−1
]

k j

dω

2π
.

Consider finally S3. Since the function ∂ψ̂k/∂θν does
not depend on the time index, one may approximate the
time average T−1

∑
T−1
t=0 Y(t − u)(∂ψ̂/∂θν)T[Y(t)] by 0 if

u 6= 0. Further, since this function depends only on
Yk(0), . . . ,Yk(T − 1) which are independent of the Yj(t),
for j 6= k, we can also approximate the time average
T−1

∑
T−1
t=0 Yj(t)(∂ψ̂/∂θν)[Yk(t)] by 0. Hence

S3 ≈
K

∑
k=1

Cµ,kk(0)
1
T

T−1

∑
t=0

Yk(t)
∂ψ̂k

∂θν

[Yk(t)].

But our estimator ψ̂k satisfies T−1
∑

T−1
t=0 Yk(t)ψ̂k[Yk(t)] = 1

(see [6], eq. 9), therefore

1
T

T−1

∑
t=0

Yk(t)
∂ψ̂k

∂θν

[Yk(t)] =

− 1
T

T−1

∑
t=0

{
ψ̂[Yk(t)]+Yk(t)ψ̂ ′

k[Yk(t)]
}

∂Yk(t)
∂θν

By a similar calculation as before, the last right hand side
may be approximated by−Cν ,kk(0){1+E[Y 2

k ψ̂ ′
k(Yk)]}. Thus,

one gets finally

S3 ≈−
K

∑
k=1

Cµ,kk(0)Cν ,kk(0){1+E[Y 2
k ψ

′
k(Yk)]}.

Combining the above results and using now the
notation ∂B/∂θµB−1 for Cµ(0) as it equals the
average

∫ 2π

0 ∂B(ω)/∂θµB(ω)−1dω/(2π) of the
∂B(ω)/∂θµB(ω)−1 over [0,2π], one gets

Kµν(θ)≈
K

∑
j,k=1

∫ 2π

0

{
Eψ

′
k(Yk)EY 2

j

×
[

∂B(ω)
∂θµ

B(ω)−1
]

k j

[
∂B(−ω)

∂θν

B(−ω)−1
]

k j

+
[

∂B(ω)
∂θµ

B(ω)−1
]

k j

[
∂B(ω)

∂θν

B(ω)−1
]

jk

}dω

2π

−
K

∑
k=1

[Eψ
′
k(Yk)EY 2

k +1]
(

∂B
∂θµ

B−1
)

kk

(
∂B
∂θν

B−1
)

kk
.

4. THE PURE DECONVOLUTION CASE

This case corresponds to K = 1, hence X(t), Y(t) and B are
all scalar and will be denoted as X(t), Y (t) and B and we
drop the index k in ψk.

The expression (8) for the gradient in this case reduces to

1
T

T−1

∑
n=0

∂ logB(2πn/T )
∂θµ

[
2πIY ψ̂(Y )

(2πn
T

)
−1

]
, (10)

where IY ψ̂(Y )(2πn/T ) is defined similarly to (9), except that
it is now a scalar.

The approximate Hessian can also be written more com-
pactly, putting κ = EY 2Eψ ′(Y ),

Kµν(θ)≈
∫ 2π

0

[
κ

∂ logB(−ω)
∂θµ

+
∂ logB(ω)

∂θν

]
∂ logB(ω)

∂θµ

dω

2π

−
K

∑
k=1

{κ +1}∂ logB
∂θµ

∂ logB
∂θν

.

The above formula shows that it is of interest to param-
eterize logB(ω) instead of B(ω). Further, by separating the
real and imaginary part of ∂ logB(ω)/∂θµ , one can rewrite
Kµν(θ) as,

Kµν(θ)≈
∫ 2π

0

{
(κ +1)

[
ℜ

∂ logB(ω)
∂θµ

− ∂ logB
∂θµ

]
[
ℜ

∂ logB(ω)
∂θν

− ∂ logB
∂θν

]
+

(κ −1)
[
ℑ

∂ logB(ω)
∂θµ

ℑ
∂ logB(ω)

∂θν

}dω

2π
,

ℜ and ℑ denoting the real and imaginary parts. This for-
mula shows that it is of interest to parameterize the real and
imaginary parts of logB(ω) by two different sets of param-
eters, since then there is a decoupling between these sets in
the quasi-Newton algorithm.

An simple interesting parameterization for logB(ω) is

logB(ω) = θ0 +
m

∑
µ=1

[θµ cos(µω)+ iθµ+m sin(µω)].

The parameters θ0, . . . ,θm and θm+1, . . . ,θ2m specify the real
and imaginary parts of logB(ω) respectively (these parts are
even and odd functions respectively, hence the use of the co-
sine and sine functions to represent them). The parameter
θ0 correspond to the scale of the sources and cannot be es-
timated. We may (and will) put it to 0. The expression (10)
for the gradient reduces to (rµ +r−µ)/2, for µ = 1, . . . ,m and
rm− r−m for µ = m+1, . . . ,2m, where

rµ =
2π

T

T−1

∑
n=0

ei2πnµ/T IY,ψ̂(Y )

(2πn
T

)
=

1
T

T−1

∑
n=0

Y (t +µ)ψ[Y (t)]

(11)



are the circular cross covariances between {Y (t)} and
{ψ[Y (t)]}. Thus, the quasi-Newton algorithm reduces to the
fixed point iteration

θµ 7→ θµ −
{

(rµ + r−µ/(κ̂ +1), µ = 1, . . . ,m
(rµ−m− rm−µ)/(κ̂ −1), µ = m+1, . . . ,2m ,

κ̂ denoting the current estimate for κ . It is also of interest to
work with the parameters ϑµ = (θµ + θµ+m)/2 and ϑ−µ =
(θµ −θµ+m)/2, µ = 1, . . . ,m so that one has

logB(ω) =
m

∑
µ=−m

ϑµ eiµω , (ϑ0 = θ0).

The quasi-Newton algorithm for these parameters is then

ϑµ 7→ ϑµ −
κrµ − r−µ

κ2−1
, 0 < |µ| ≤ m. (12)

Note that the criterion (5) reduces to simply Ĥ(Y ), since∫
logB(ω)dω/(2π) = ϑ0 = 0. This criterion can be com-

puted to ensure that it is decreased at each iteration, other-
wise the Newton step could be reduced by a factor < 1 so
that it is so.

5. A SIMULATION EXAMPLE

We consider the observation model X(t) = ρ ′S(t − 1) +
S(t)+ρ ′′S(t +1) where {S(t)} is the source sequence. Thus
B(ω) is proportional to 1/(1 + ρ ′e−iω + ρ ′′eiω). It can
be shown that for |ρ ′ + ρ ′′| < 1, one can factorize (1 +
ρ ′e−iω +ρ ′′eiω) as c(1+ z′e−iω)(1+ z′′eiω), with c = 1/2+√

1/4−ρ ′ρ ′′ and z′ = ρ ′/c, z′′ = ρ ′′/c and both |z′| and |z′′|
are strictly less than 1. Thus one has the expansion

logB(ω)=
−1

∑
j=−∞

(−1) jz′| j|

| j|
e−i jω +

∞

∑
j=1

(−1) jz′′ j

j
ei jω +Const.

j 1 2 3 4 5
(z′′ j + z′ j)/ j 1.1117 .3101 .1157 .0487 .0220
(z′′ j − z′ j)/ j 0.0654 .0364 .0202 .0113 .0063

j 6 7 8 9 10
(z′′ j + z′ j)/ j .0103 .0050 .0025 .0013 .0007
(z′′ j − z′ j)/ j .0035 .0020 .0011 .0006 .0003

Table 1: Value of (z′′ j ± z′ j)/ j for j = 1, . . . ,10 (ρ ′ =
0.4, ρ ′′ = 0.45)

We take ρ ′ = 0.4, ρ ′′ = 0.45, which yields the values of
(z′′ j ± z′ j)/ j reported in the table 1. One can see from this
table that one may truncate without incurring much error the
expansion for logB(ω) at index m =±10 and thus consider
the value reported in table 1 as the “true value” of |θ j| (first
row) and |θm+ j| (second row). We generate 1000 sequences
of observations of length T = 512, using as source distribu-
tion the bilateral exponential distribution. For each sequence
of observations, we apply our algorithm with m = 10 and
the entropy H(Y ) and score function ψY are estimated by the
method of [6]. The mean and standard deviation of the re-
sulting estimators θ̂ j are reported in table 2.

j θ̂ j θ̂10+ j
mean std. dev mean std. dev

1 -1.1029 0.0417 -0.0613 0.0954
2 0.3098 0.0420 0.0300 0.0957
3 -0.1099 0.0408 -0.0154 0.0950
4 0.0494 0.0431 0.0085 0.0959
5 -0.0207 0.0405 -0.0016 0.0923
6 0.0119 0.0424 -0.0002 0.0935
7 -0.0016 0.0429 -0.0025 0.0950
8 0.0022 0.0418 -0.0024 0.0942
9 0.0020 0.0416 0.0007 0.0984
10 0.0033 0.0428 0.0008 0.0901

Table 2: Simulation results for the estimator θ̂ j based on
1000 repetitions; sample size T = 512.

The algorithm converges quite fast: the mean num-
ber of iteration is 4.2. Note that the gain of the sepa-
rating filter |B(ω)|2 must be proportional to the spectral
density of the observed sequence {X(t)}, which admits
|dX (2πn/T )|2/(2πT ) as a raw estimate. Therefore the pa-
rameters θ1, . . . ,θm specifying the real part of logB(ω) can
be estimated directly from the |dX (2πn/T )|2 and such esti-
mates actually serve to initialize our algorithm.

6. CONCLUSION

We have provided a solution of the blind separation-
deconvolution problem, based on the mutual information cri-
terion and obtained formulas for the quasi Newton algorithm.
Formula for the asymptotic covariance matrix of the estima-
tor can be obtained as well but not presented due to lack of
space. In the pure deconvolution case, we propose a param-
eterization which leads to a very simple quasi Newton algo-
rithm. The algorithm has been validated by simulation. We
haven’t provided simulations for the quasi Newton algorithm
in the general separation-deconvolution case because of lack
of space and also because it is quite complex. We are cur-
rently developed a simplified version, to be reported later.
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