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ABSTRACT 

An approach to personal authentication using the fusion of the 

finger-geometry and the novel biometric features called eigen-

fingers at the score-matching level is presented in this paper. The 

online biometric system integrates finger-geometry features ex-

tracted from the four fingers and eigenfingers features extracted by 

means of the Karhunen-Loève (K-L) transform applied to the four 

finger strip-like regions. Additionally, the system has a liveness 

detection module, which uses an IR image of the dorsal surface of 

a hand. Authentication experiments were conducted on a database 

consisting of 1270 hand-images (127 persons). The verification 

results, EER = 0.04% and minimum TER = 0.04%, suggest that the 

system can be used in medium/high-security environments. 

1. INTRODUCTION 

Biometric person authentication is the process of determining 

whether someone is, in fact, who is declared to be, based on physi-

cological and behavioural characteristics of an individual [1]-[3]. 

A prototype of an online bimodal biometric authentication system 

based on the fusion of a finger-geometry and a novel biometric 

feature called eigenfinger is described in the paper. The system has 

a liveness detection module capable of detecting liveness in bio-

metric samples. The liveness detection module uses a thermal cam-

era as input device. The infrared (IR) image of the dorsal surface of 

the hand is acquired at the same time as capturing the biometric 

sample (two or four fingers) by a scanner. The combination of 

eigenfinger and finger-geometry features and liveness detection 

increase anti-spoofing protection and makes the online biometric 

authentication more robust to fraudulent methods. 

Many authentication systems utilizing the biometric features of a 

hand-geometry have been developed [4] – [8] over the past decade. 

Ribaric et al. [7] and Kumar et al. [8] combined line-like features 

of the palm and hand geometry into a multimodal biometric system 

for user authentication. 

K–L-transform-based techniques have been widely used in the field 

 

of biometrics, particularly in face-recognition techniques (eigen-

faces) [9], but they have also been used for palmprint recognition 

[10], lip tracking (eigenlips) [11] and hand-gesture recognition 

through hand contours (eigencontours) [12]. 

In general, multimodal biometric systems require fusion of infor-

mation obtained from two or more biometric modalities. Various 

levels of fusion are possible [13], [14]:  from feature-extraction 

level to decision level. Different multimodal biometric systems 

based on the fusion of hand-geometry and palmprint features [7], 

[8], and face, fingerprint and hand-geometry features [15], [16] 

have been described. 

Liveness detection, as an anti-spoofing protection in a biometric 

system, ensures that biometric being captured is an actual meas-

urement from the live person who is present at the time of captur-

ing. There are several approaches to liveness detection of the hand, 

for example: IR and near-IR measurements of hand vein patterns, 

hand thermograms [17], and photo-plethysmography [18]. 

2. SYSTEM DESCRIPTION 

Figure 1 shows the block-diagram of the proposed biometric au-

thentication system. First, images (visible and infrared) are ac-

quired simultaneously using a scanner and a thermal camera. Scan-

ner images are used as samples for the biometric authentication, 

while the IR images are used for liveness detection. Some standard 

procedures are then applied in order to segment these images. In 

the next phase, the liveness detection is performed on the seg-

mented infrared image. If the liveness detection module claims the 

hand is alive, the biometric system proceeds with extraction of the 

biometric features from the scanner image. Otherwise, the process 

is terminated and the user is rejected.  

Two kinds of biometric features are extracted: (i) Eigenfinger fea-

tures extracted by means of the K-L transform applied to the previ-

ously extracted and normalized finger subimages; (ii) Finger ge-

ometry features extracted from the hand contour. 

Each of these features is matched to the templates stored in the da-

tabase. Matching scores are combined using fusion at the
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Figure 1: Block diagram of the proposed biometric authentication system



matching score level, and finally, an authentication decision is 

made by thresholding. 

 

2.1 Image acquisition 
Visual images and IR images are acquired using a scanner and a 

thermal camera, respectively. A scanner is used to capture palmar 

images of the hand in a 180 dpi (dots per inch) resolution and 256 

gray levels. The user is required to put his/her hand on the scan-

ner with the fingers spread naturally; there are no pegs, or any 

other hand-position constrainers. The infrared camera is used to 

simultaneously capture the dorsa hand images at the relatively 

low resolution of 320x240 pixels. We used ThermaCAM(TM) 

PM695 infrared camera with spectral range of 7.5µm – 13.0µm. 

An example of such image pair is presented in the Figure 2. 

 

   
        a)       b) 

Figure 2: An example of the acquired images, a) Scanner image, 

b) IR image 

 

2.2 Image segmentation 

The scanner images are first binarized using global thresholding. 

A contour-following algorithm is applied to a binarized image to 

extract the hand contour. The hand contour is then processed in 

order to find some points relevant for the geometry and eigen-

finger feature extraction. The extracted hand contour and the 

relevant points are shown in the Figure 3 a). Finally, the line of 

symmetry of each finger (Fig. 3 b)) has to be found using four 

additional points marked with F1-F4 on the Figure 3b). 

 

     
         a)                                  b) 

a) Hand contour with relevant points, b) Processed finger on the 

hand image 

 

2.3 Eigenfinger template generation 

The first step towards the eigenfinger template generation is 

locating the finger-strip regions to be extracted on each finger. 

The finger-strip regions are defined with respect to the finger 

line of symmetry and relevant points as shown on the Figure 4a). 

The selected finger-strip region contains the folds of the skin 

corresponding to the places between the phalanxes of the finger. 

These folds of the skin and their positions, as well as texture of 

the skin contribute to the discriminatory characteristics of the 

region. 

The regions of interest in the original grey-scale images vary in 

size and orientation from image to image, so before using the K-

L transform, they need to be normalized. Geometry normaliza-

tion is applied to the grey-scale image to obtain the finger-strip 

subimages: the little-finger subimage is normalized to 16 x 64 

pixels, and the ring-, middle- and index-finger subimages to 14 x 

64 pixels. After the subimages have been extracted, a lighting 

normalization using histogram fitting [19] is applied.  

The examples of normalized finger-strip subimages are shown 

on Figures 4 b) – 4 e). 
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 (b)    (c)   (d)   (e)  

Figure 4. a) Original hand image with the regions of interest 

marked on it, b) normalized little-finger subimage, c) normalized 

ring-finger subimage, d) normalized middle-finger subimage, e) 

normalized index-finger subimage 

 

We use the K-L transform, which is a well-known technique in 

biometrics [9], for feature extraction. 

The basis vectors of the K–L transform are calculated by finding 

the largest m eigenvectors of the covariance matrix of the set of 

images. In the case of finger-strip images, we will call the eigen-

vectors eigenfingers. The subspace spanned by these eigenvec-

tors’ is referred as the finger-space. In our system, four finger-

spaces are created, one for each finger considered. We calculated 

the finger-spaces using the training set of our database, consist-

ing of 550 images of 110 persons. 

Some of the little-finger eigenfingers obtained using our data-

base are presented in the Figure 5. They are ordered in the fal-

ling order of their appropriate eigenvalues, and their ordinal 

numbers are shown. 
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Figure 5: Some little-finger eigenfingers obtained from our data-

base, in the falling order of the appropriate eigenvalues. k denotes 

the eigenfinger’s ordinal number 

 

The largest eigenfingers carry the useful information (in the 

sense of image representation) and only they are used as the 

basis for the finger-space, while the information carried by the 

smaller eigenvectors is lost in the process of encoding. Based on 

the preliminary recognition experiments on the training data-

base, we chose m = 100 for the dimensionality of all four finger 

spaces. 

The feature vector from an unknown finger subimage can be 

obtained by projecting the image onto a corresponding finger-

space. Thus, the eigenfinger template extracted from each sam-

ple consists of four 100-component vectors Fi; i = 1, 2, 3, 4, one 

for each of the four fingers considered (1 – little finger, 2 – ring 

finger, 3 – middle finger, 4 – index finger). 

 

2.4 Finger-geometry template generation 

Figure 6 illustrates the finger geometry measurements taken 

from the hand contour. Six measurements (five widths and 

length) are taken for each of the considered fingers (Figure 6). 

Thus, the finger-geometry template extracted from each sample 

consists of a 24-component vector G, in the case when four fin-

gers are considered, or a 12-component vector, in the case when 



two fingers are considered. 

 

 
Figure 6: Finger geometry measurements 

 

2.5 Matching, fusion and decision 

A template in our system is represented by five feature vectors: 

four eigenfinger feature vectors Fi; i = 1, 2, 3, 4 and a finger-

geometry feature vector G. In order to verify or identify a user, 

the matching process between the live-template and the tem-

plates from the database has to be performed. The matching 

between corresponding feature vectors is based on the Euclidean 

distance. In general, when matching two templates, X and Y, 

five Euclidean distances are obtained: DF

i(X, Y); i = 1, 2, 3, 4 

and DG(X, Y). 

Since these distances come in different ranges, a normalization 

first has to be performed, so that they can be combined into the 

unique matching score. The normalization is carried out by 

means of five transition functions, SFi(D) ; i = 1, 2, 3, 4 and 

SG(D) which were determined experimentally from the training 

set of the database [7]. 

The normalized outputs of the six matching modules are com-

bined using fusion at the matching-score level. The fusion is 

expressed by means of the total similarity measure TSM(X,Y) 
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In our system the weights are set proportionally to the prelimi-

nary unimodal recognition results. In the case the two fingers 

(middle- and index-finger) are considered the weights are set to 

wF

1 = 0, w
F

2 = 0, w
F

3 = 0.337, w
F

4 = 0.330 and w
G = 0.333. In 

the case the four fingers are considered the weights are set to wF

1 

= 0.197, wF

2 = 0.201, w
F

3 = 0.202, w
F

4 = 0.197 and w
G = 0.202. 

The decision in our system is based on thresholding. If two tem-

plates, X and Y have TSM(X,Y) ≥ T, where T is the threshold, 

they are considered to belong to the same person. Otherwise, 

they are considered to belong to different persons. 

3. LIVENESS DETECTION 

The goal of a liveness detection module is to extract characteris-

tic features of the live hand from the infrared images and use this 

features to make a decision whether the sample represents a live 

hand or not. Two kinds of features are proposed: (i) Histogram 

of the entire image (including background); (ii) Temperature 

distributions from the two characteristic regions of dorsa hand 

images. 

Image histogram H(i) carries the information about the distribu-

tion of the temperature (represented by gray-scale levels i = 0, 1, 

2, …, 255) in the infrared image. One such histogram is shown 

on Figure 8. Two prominent peeks can be noticed in the histo-

gram, one corresponding to the background temperature, and the 

other to the hand temperature. 

  
          (a)           (b) 

Figure 8: a) Infrared image, b) Corresponding histogram 

 

We selected two regions of the hand with characteristic tempera-

ture distributions – the middle-finger area, and the back of the 

hand area marked on the Figure 9 a) and Figure 9 c), respec-

tively. We observe the normalized vertical projection V(i) of the 

finger region, and the normalized horizontal projection H(i) of 

the back of the hand region. The obtained projections from Fig-

ure 9 a) and c) can be seen on Figure 9 b) and d), respectively. 

There, some characteristics of the live hand can be observed. For 

example, the tip of the finger is much warmer from the rest of 

the finger, and the areas on the back of the hand, where the 

metacarpal bones are located are colder than the areas between 

the bones. 

 

  
       (a)          (b) 

  
          (c)          (d) 

Figure 9: a) Infrared hand image with finger region marked, b) 

Vertical projection of the finger region, c) Infrared hand image 

with back of the hand region marked, d) Horizontal projection of 

the back of the hand region 

 

We propose a multi-layer perceptron (MLP) to classify these 

features (histogram and two projections) into the live hand or 

non-live classes. However, this would require substantial num-

ber of training samples that yet have to be collected, so this part 

of the system is not implemented fully at this time. 

4. EXPERIMENTAL RESULTS 

Authentication experiments were conducted on a database con-

sisting of two mutually exclusive sets: a training set and a test 

set. The training set consisted of 550 visual hand-images of 110 

persons and was used for the generation of eigen-basis, obtain-

ing the transition functions SFi(D) ; i = 1, 2, 3, 4 and S
G(D) and 

the weights wF

i;  i = 1, 2, 3, 4 and w
G. The test set consisted of 

1270 visual hand-images of 127 persons (10 images per person) 

and was used exclusively for the evaluation of the system per-

formance. None of the persons involved in the acquisition of the 

test set was involved in the acquisition of the training set. Out of 

127 persons in the test set, 57 played the role of clients, while 

the remaining 70 played the role of impostors. Out of ten images 

for each client, seven were used for enrolment, and the remain-

ing three were used for testing. All ten of the impostor samples, 



for each impostor, were used for testing. 

Identification 

In the identification experiments each of the test client samples 

tried to be successfully identified by the system. Also, each of 

the test impostors tried to be identified as any of the clients en-

rolled in the system. The identification setup makes for 171 

(57x3) client experiments and 700 (70x10) impostor experi-

ments. The results of the experiments are shown in Table 1. 

Verification 

In the verification experiments each of the test client samples 

tried to be successfully verified using his/her own ID. Each of 

the impostors tried to be verified using IDs of all clients. The 

verification setup makes for 171 (57x3) client experiments and 

39900 (70x10x57) impostor experiments. The results are shown 

in Table 1. 

Experimental results of all experiments, both identification and 

verification, are expressed in the terms of the EER (Equal Error 

Rate) and the minimum TER (Total Error Rate). The threshold 

values corresponding to the EER and the minimum TER are also 

given in the Table 1.  

We tested both unimodal performance of the system (using only 

finger-geometry features or using only eigenfinger features), as 

well as bimodal performance of the system. The above experi-

ments were made using features from two fingers (index- and 

middle-finger) and using features from four fingers (little-, ring-, 

middle- and index-finger). 

 

Identification results Verification results

Features used EER 

T 

Minimum 

TER 

T 

EER 

T 

Minimum 

TER 

T 

2 Fingers - geometry 
5.29% 

0.910 

7.17% 

0.975 

0.43% 

0.860 

0.43% 

0.860 

2 Fingers –  

eigenfingers 

7.86% 

0.885 

14.33%  

0.900 

1.75% 

0.780 

2.10% 

0.875 

2 Fingers – geometry 

+ eigenfingers 

1.75% 

0.825 

2.92% 

0.900 

0.18 

0.750 

0.18 

0.750 

4 Fingers - geometry 
1.75% 

0.645 

3.34% 

0.675 

0.26% 

0.510 

0.26% 

0.510 

Fingers –  

eigenfingers 

3.51% 

0.840 

5.79% 

0.850 

0.26% 

0.780 

0.26% 

0.780 

4 Fingers – geometry 

+ eigenfingers 

1.17% 

0.760 

2.03% 

0.775 

0.04% 

0.710 

0.04% 

0.710 

Table 1: Experimental results 

5. CONCLUSION 

We have developed a prototype of an online biometric authenti-

cation system based on the finger-geometry features and the 

novel biometric features called eigenfingers. The experimental 

results, obtained on a database of 1270 images of 127 persons 

show the effectiveness of our system in the sense of EER = 

1.17% and the minimum TER = 2.03% for identification, and 

EER = 0.04% and minimum TER = 0.04% for verification. 

The results show the feasibility of the eigenfinger features for 

biometric authentication as well as effects of fusion at the match-

ing-score level on improving the system’s accuracy. The prelimi-

nary work on the liveness detection module reveals the number of 

features that can be collected from the IR images of the hand and 

used for the liveness detection. 

In the future, we plan to test the system on a larger database col-

lected over a longer period of time. We also plan to collect more 

IR images and continue the work on the liveness detection mod-

ule of the system, as well as try to use the features obtained from 

the IR images as biometric features for authentication. 
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