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ABSTRACT

We use an optimization technique to accurately locate a dis-
torted grid structure in a microarray image. By assuming
that spot centers deviate smoothly from a checkerboard grid
structure, we show that the process of gridding spot centers
can be formulated as a constrained optimization problem.
The constraint is equal to the variations of the transform pa-
rameter. We demonstrate the accuracy of our algorithm on
two sets of microarray images. One set consists of some im-
ages from the Stanford Microarray Database; we compare
our centers with those annotated in the Database. The other
set consists of oligonucleotide images. We compare our re-
sults with those obtained by GenePix Pro 5.0. Our experi-
ments were performed completely automatically.

1. INTRODUCTION

An important first step in gene expression analysis is detect-
ing the position of a spot center, and labeling its correspond-
ing coordinate in an micro-arrayer [2, 8]. This is called the
spot gridding problem [15, 6]. Even though micro-arrayers
arrange spots on a relatively regular checkerboard grid, spot-
ting error irregularities that occur during the array manufac-
turing process makes accurate gridding of spot centers dif-
ficult. Deviations from microarray regularities are attribut-
able to different causes, such as center-to-center spacing de-
viations of an arrayer, varied surface properties of the sub-
strate, and imprecise movement of manufacturing devices
[11]. Spots can also vary in size and position due to noise
in the sample preparation and hybridization processes [13].
Dealing with spot center variations is the principal source of
complexity in solving the gridding problem.

Some examples of image analysis software for spot grid-
ding found in the Stanford Microarray Database (SMD) are
ScanAlyze [10], GenePix [4], and Koadarray [5]. These re-
quire parameters and, at times, manual intervention to lo-
cate exact spot centers. We provide one constraint, which
assumes that spot centers deviate smoothly. Deviations are
modeled as a sequence of similarity transformations whose
parameters vary smoothly. With this constraint, we can for-
mulate the spot center gridding problem as a constrained op-
timization problem by combining a quantitative criterion that
measures the correctness of the gridding result with a con-
straint that reduces local parameter variation. The problem
can be solved numerically by an iterative algorithm.

We begin with block boundary detection to extract the
block layout. A Bayesian approach, based on a multi-
threshold Markov model [1], is combined with a model-
based recognition method and a refinement algorithm to se-
quentially refine the spot centers from a sequence of thresh-
olds. After obtaining the initial transform parameters, the La-

grange multiplier λ controls the balance between the correct-
ness of the estimated transform parameters and the smooth-
ness of the transforms in the final solution.

2. GRIDDING PROBLEM

Many approaches that solve the gridding problem require pa-
rameters as well as human intervention. The usual parame-
ters are: the block layout structure, the width and height of
each block, and the distances of spot centers of adjacent rows
and columns. Even if these parameters are known, human in-
tervention is still needed to adjust overly-deviated spot cen-
ters.

A reasonable way to do this is to assume that spot center
deviations can be modeled as smoothly varying transforma-
tions, which can be characterized by a few local parameters.
Let x and y be the coordinates of a pair of matched centers
in the model and the image, respectively. We use Tx,y to
represent the distortion between x and y, and assume that
the distortion can be approximated by a similarity transform.
Thus, x and y are related by the matrix form

y = Tx,y(x) ≈ A(x,y)x+b(x,y),

where

A(x,y) =
[

a(x,y) −b(x,y)
b(x,y) a(x,y)

]
(1)

and

b(x,y) =
[

c(x,y)
d(x,y)

]
(2)

is a translation matrix. We denote the collections of centers
in the model and the image as {x} and {y} respectively. We
use [x,y] to denote that x and y are a pair of matched centers.
The mean squared error of a collection of matched centers is

ee({[x,y]}) =
1

|{[x,y]}| ∑
{[x,y]}

||A(x,y)x+b(x,y)−y||2, (3)

where |{[x,y]}| is the size of the matched pair. We can
impose a smoothness constraint by minimizing the variations
of A(x,y) and b(x,y). If xi and x j are neighboring grids,
then according to a smoothness constraint, the parameters
of A(xi,yi), b(xi,yi) and A(x j,y j), b(x j,y j) should have
similar values. A simple measurement of the smoothness of
the parameters is

es({[x,y]})=
1

2|A {x}| ∑
xi∈A {x}

1
|N {xi}| ∑

{[x,y]}
VA(i, j)+Vb(i, j),

(4)
where VA(i, j) = ||A(xi,yi) − A(x j,y j)||2F , Vb(i, j) =

||b(xi,yi)−b(x j,y j)||2 and ||.||F is the Frobenius norm de-

fined as
√
∑i∑ j |bi, j|2. According to Equations 3 and 4, we



need to find the set of matched pairs between {x} and {y}
that minimizes ee +λes, where λ is a parameter that weights
the error in the matched pair relative to the departure from
smoothness of the transform parameters.

2.1 Numerical Solution

To find a numerical solution of ee + λes, we use a
finite-element method, because it is easy to implement
and achieves a satisfactory solution. Let x and y be
paired, with x in the active set A {x}. If the coordi-
nate of x is [x1(k, l) x2(k, l)]T and the coordinate of y is
[y1(k, l) y2(k, l)]T , then - to simplify the formulation of a
numerical method - we denote x as xk,l , and y as yk,l ; the
parameters in A(xk,l ,yk,l) as ak,l and bk,l; and the parame-
ters in b(xk,l ,yk,l) as ck,l and dk,l . The mean squared error
measurement in Equation 3 is, therefore:

ee =
1

|A {x}| ∑
xk,l∈A {x}

{Ee(k, l)},

where Ee(k, l) = (ak,lx1(k, l)−bk,lx2(k, l)+ck,l−y1(k, l))2 +
(bk,lx1(k, l)+ak,lx2(k, l)+dk,l −y2(k, l))2, and |A {x}| is the
size of the active set.

We also use N (xk,l) to denote the set of neighbors of
xk,l in the active set.
Equation 4 then becomes

es =
1

2|A {x}| ∑
xk,l∈A {x}

1
|N {xk,l}| ∑

xk+i,l+ j∈N {xk,l}
{Es(k, l)}, (5)

where Es(k, l) = [2(ak,l − ak+i,l+ j)2 + 2(bk,l − bk+i,l+ j)2 +
(ck,l − ck+i,l+ j)2 +(dk,l − dk+i,l+ j)2] and i, j ∈ {−1,1}. We
need {ak,l}, {bk,l}, {ck,l}, and {dk,l} to minimize

e = ee +λes. (6)

To solve this, we differentiate e with respect to ak,l , bk,l , ck,l ,
and dk,l and set the derivatives to zero. The resultant equa-
tions are formed as a matrix representation and can be solved
by the Jacobi iterative scheme.

The final quality of the Jacobi iterative solution depends
on the quality of the initial solution. In the following section,
we propose a method that finds a robust initial solution.

3. FINDING A ROBUST INITIAL SOLUTION

We use a sequence of robust image processing methods for a
more automated process of finding effective initial transform
parameters.

3.1 Boundary Detection and Block Extraction

In a microarray, spots are grouped into blocks, and we must
delineate each block in order to identify the spot centers
within the blocks. In [3], the blocks of a microarray are delin-
eated from the vertical and horizontal projection profiles of
the image. However, the method only works well provided
that the microarray image has no rotation deviation.
Boundary Detection

To extract the boundaries of a slightly rotated image, we
use the line equation y = x ·AH +BH to represent the top or
bottom boundary.

Boundary Detection and �

Spotting the Centers�

Initial Transform Parameters�

Jacobi Iteration�

Ideal Arrayer �
Model�

Block �Extraction�

Figure 1: Our model-based approach algorithm.

Threshold �
refinement�

Connected �
components�

Spot       �
centers�

Initial threshold�

Initial spot centers�

Geometric hashing�

Parameters �
refinement�

Connected components�

Transform parameters�

Sub�-�block�

Initial sub�-�block �
parameters�

Figure 2: Sub-block transform parameters acquisition.

In order to find the boundary line L that is tangent to
the edges of spot centers located at a boundary, we use the
Gaussian-like weighting function

W (dL) = W (i, j) · exp(−dL
2)

in which W (i, j) = |∂ I(i, j)/∂ j| and dL = j− (i ·AH +BH).
The weighting function gives more weight to a pixel that

is closer to the line L, or one that has a greater absolute in-
tensity gradient. To find the line, we look for the AH and BH
that minimize the weighted squared error ErrH(AH ,BH) =
∑i, j W (dL) · (dL

2).
By differentiating ErrH with respect to AH and BH and

setting the results to zero, we have

∑
i, j

jW (dL) ·dL{d2
L +1} = 0, and

∑
i, j

W (dL) ·dL{d2
L +1} = 0.

If a point is close to line L, then we have dL → 0. This
means that (d2

L +1) can be approximated as exp(dL
2). If we



denote ∑L to be the summation of all points near L, we have
the approximations of the two equations above, which are
∑L jW (i, j) ·dL = 0, and ∑LW (i, j) ·dL = 0.
The solutions of the above equations are

AH = (1/d) · {∑
L

jW (i, j)∑
L

iW (i, j)

− ∑
L

W (i, j) ·∑
L

j · i ·W(i, j)}, and

BH = (1/d) · {∑
L

jW (i, j)∑
L

j · i ·W(i, j)

− ∑
L

j2W (i, j) ·∑
L

iW (i, j)},

where d = (∑L jW (i, j))2 −∑LW (i, j) · j2∑LW (i, j).

Block Extraction
After extracting four boundary lines, we slightly mod-

ify them such that they form a rectangular box. To extract
blocks, we project along each boundary line and select the
blocks from the projection profile as described in [3].

3.2 Initial Distortion Estimation

After the blocks are delineated, we estimate an initial distor-
tion of the spot centers in each block. A good initial estima-
tion of block distortion is obtained by dividing a block into
sub-blocks, and assuming that the transform within a sub-
block is the same anywhere in that sub-block. Thus, each
sub-block has a transform. Dividing a block into several sub-
blocks and assuming each has the same transform allows us
to efficiently apply the geometric hashing algorithm and ob-
tain transform parameters.

There is a trade-off between the solutions of geometric
hashing and computation time cost, i.e., a sub-block with
more spots obtains a better result at a higher computation
time cost.

Geometric Hashing to Find Matched Pairs in a Sub-block
We assume that local distortion within a sub-block can be

approximated by a similarity transform. That is, model point
x and sub-block point y are related by the matrix transfor-
mation

y ≈
[
a −b
b a

]
x+

[
c
d

]
. (7)

Geometric hashing can find the parameters of this sim-
ilarity transform between the model points and sub-block
points, according to an invariant property. We define a frame
from a pair of model points and assign the coordinate [0 0] t

to one point and [1 0]t to the other. These two points are
called a basis pair. The coordinates of all other points with
respect to the same basis will be preserved after applying any
similarity transform to the points.

In this way, if model points and sub-block points are re-
lated by a similarity transform, we can derive the parameters
of the similarity transform from the matched basis pair in
the model and sub-block. A detailed discussion of geometric
hashing can be found in [7, 9, 14].

Gridding Centers Using a Multi-threshold Markov
Model

Because there are various signal intensities and noise lev-
els in a microarray, using a threshold to distinguish signals

from noise may yield either a spot pattern with insufficient
signal information, or one with too much noise information.
Thus, we use a Bayesian approach on a Markov random field
model to locate spots. We begin with a coarse threshold to bi-
narize a sub-block image. We then compute connected com-
ponents of the resultant image and find the component cen-
ters. The transform between the model and sub-block centers
is obtained by geometric hashing. We refine the threshold
and repeat the above procedure, replacing geometric hashing
with a Bayesian approach that uses a Markov model to refine
parameters.
Tree-based Outlier Correction

Because local distortion varies smoothly, the transform
parameters of neighboring sub-blocks should have similar
values. An error in a previous parameter estimation can thus
be adjusted, based on the estimated parameters of neighbor-
ing sub-blocks. If the transform of a sub-block is inconsistent
with its neighboring sub-blocks, we say that the sub-block is
an outlier. A simple way to define an outlier is to let the rota-
tion θ and scale s be the similarity transform of the sub-block
within a given threshold.

The quadtree structure allows us to correct any number
of outlier sub-blocks. If the children of a node p are not
all outliers, parameters of the inlier children nodes are used
to calculate the parameters of the parent node p . Resultant
parameters are passed to all outlier children of p and become
the new parameters of the outlier nodes. If all children of p
are outliers, then p is an outlier. We can use the parameters
obtained from the inlier sibling of p as the new parameters
of p.

4. PERFORMANCE EVALUATION

We evaluate our spot gridding algorithm by comparing our
results with those obtained by applying other algorithms to
two sets of microarray images. One set contains some poor
quality images from SMD, while the other contains Agilent
60-mer oligonucleotide microarrays whose specifications are
on the related web pages [12].

The Agilent microarrays are some of the best quality
oligonucleotide chips currently available commercially. We
use these sets of images to demonstrate that our method can
accurately grid the spot centers of images of varying quality
produced by different technologies. We implement our al-
gorithm using the Windows XP platform and all images are
processed in the Matlab environment. The gray level image
in SMD takes eight bits, while that of Agilent’s image takes
sixteen bits. Throughout our experiments, we use gray-scale
images and set the control parameter λ to 1

16 . Our experi-
ments show that this setting is robust for different microarray
images.

Figures 4 shows the super-position of our detected spot
centers over the block provided by SMD. All spot centers
detected by our method are located within their correspond-
ing boxes. The mean and standard deviation of the Distance
of our centers and the SMD centers (centroids of boxes) are
respectively 1.7 and 1.1 pixels(Figures 5). In addition, our
method can extract accurate spot centers from a small rotated
microarray image.

5. CONCLUSIONS

A large proportion of grid distortion can be approximated
by a locally smooth distortion. In this manuscript, we pro-



Figure 3: Block (1,1) of lc30n010 provided by a
SMD microarray image.

Figure 4: The super-position of our detected spot
centers on the block in Figure 3.

pose an optimization approach to grid the exact spot cen-
ters of a microarray image, whose grids are slowly varying
similarity transforms. A Bayesian approach and a multi-
threshold Markov model are used to find robust initial pa-
rameters. The initial parameters are refined by Jacobi itera-
tions, which solves our optimization problem. Experiments
show that our method can robustly extract accurate spot cen-
ters from microarrays with local smooth grid distortions. In
practice, however grid distortions can be discontinuous. Im-
proving our method for images of discontinuous distortion
grids is an issue worth further study.
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