
JAVANETPHONE: A JAVA CLIENT FOR IP TELEPHONY APPLICATIONS IN AN MGCP FRAMEWORK

Susanna Spinsante† (Student Member IEEE), Franco Chiaraluce†, Ennio Gambi†, Aldo Vespasiani‡, Alessio Perotti‡

† Dipartimento di Elettronica, Intelligenza artificiale e Telecomunicazioni, Università Politecnica delle Marche
Via Brecce Bianche, I-60131, Ancona, Italy

phone: + (39) 071 2204894, fax: + (39) 071 2204835, email: s.spinsante,f.chiaraluce,e.gambi@univpm.it
web: www.deit.univpm.it
‡ Selta Telematica S.p.A.

Via Nazionale-Km. 404,500, I-64019 Tortoreto Lido, Teramo, Italy
avespasiani, aperotti@seltatel.it

web: www.selta.net

ABSTRACT
Many software applications have been developed in
recent years, to exploit the convergence between voice
and data networks and the availability to the final user of
high speed and low cost connections. These software
applications operate in real-time communication scenarios
and, at least in principle, should ensure portability and
platform independence. In this paper a software IP
telephony application completely written in Java language
and called JavaNetPhone is presented. The aim of such a
communication tool is to operate in a business LAN
environment, based on the Media Gateway Control
Protocol framework, to extend the already available
telephony facilities. At the authors’ best knowledge, other
similar applications exist, but they adopt different
programming languages and sometimes are not platform-
independent. The prototype functionalities evaluation
show that the application can give acceptable voice
performance, and further developments are being pursued
to provide the adoption of wireless communication
technologies, such as BlueTooth and WiFi, according to
the increasing demand for user’s mobility.

1. INTRODUCTION

In recent years, many software applications have been
developed in order to integrate conventional telephone
services with the new communication facilities exploiting
the Internet Protocol (IP) paradigm. The nature of IP
telephony is intrinsically software-oriented, thus making it
possible to design telecommunication applications suitable
for desktops or handheld PCs. These applications face the
problems related to real-time communications and, at least
in principle, should ensure portability and platform
independence. In this paper we present a platform
independent IP telephony application, completely
developed by means of the Java language, called
JavaNetPhone (JNP), which is able to inter-operate in a
pre-existent Media Gateway Control Protocol (MGCP) [1]
framework. The object of this tool is to extend the
telephony facilities already present in a business LAN, and
provided by means of hardware VoIP (Voice over IP)
phones and a VoIP gateway. The gateway is a traditional
PBX (Private Branch eXchange) equipped with a VoIP

board to perform H.323 and SIP (Session Initiation
Protocol) gateway functions towards the external domains,
and to act as a Call Agent (CA), by managing connections
and signalling exchanges among the MGCP phones within
the LAN. The JNP has been entirely developed in Java:
many other applications for IP telephony exist in different
programming languages but often they are not completely
portable. Furthermore, many of them are based on
implementations of the SIP or H.323 signalling stacks, and
consequently cannot be applied in different environments.
The MGCP centralized architecture fits well a traditional
PBX functional scheme; moreover, its packet format
allows an easy encapsulation of proprietary commands
inside the MGCP envelopes, to provide advanced PBX
services to the terminals connected to the LAN. The
prototype testing and evaluation showed that the
application can give acceptable voice performances, and
further developments are being pursued, exploiting
BlueTooth and Wi-Fi connections, in order to widen the
LAN telephony scenario by adding mobile communication
devices.

2. VOIP PROTOCOLS AND MGCP COMMANDS

There are a number of software VoIP applications and
products commercially available and developed by means
of different programming languages; they can be basically
divided into two major groups, one based on H.323
protocol suite and another one based on SIP (Session
Initiation Protocol). H.323, a protocol suite defined by
ITU-T for voice transmission over Internet, also provides
mechanisms for video communication and data
collaboration: it is an “umbrella” specification, including
various other ITU standards. SIP is the IETF standard for
multimedia conferencing over IP. It is a peer-to-peer,
ASCII-based, application-layer control protocol that can be
used to establish, maintain and terminate calls between two
or more endpoints. The complexity of SIP is adequate to IP
networks, as it is an HTTP-like protocol; H.323
complexity is higher, as it uses several different protocols.
Finally, the SIP architecture is modular, as many functions
and services reside in separate protocols, while the H.323
architecture is quite monolithic, as its components provide
a mix of services. The JNP presented in this paper does not
make reference to any of these two protocol specifications:

it is based on a modified version of the MGCP signalling.
This protocol was initially adopted inside the business
LAN, the target application scenario, to interface the PBX
and the hardware IP phones. As the software IP telephony
application should interact with the pre-existent PBX and
IP phones like any other hardware device, it has been
necessary to adopt the same communication protocol.
Since the beginning, the MGCP packets were used by the
VoIP Gateway to encapsulate commands and signalling
information for the hardware IP phones: in order to allow
the PBX to identify the JNP, we have adopted the same
commands and signalling information format, to make the
IP telephony application work correctly. The MGCP is
used to manage telephony gateways by means of external
call control elements called media gateway controllers or
Call Agents. A telephony gateway is a network element
that provides conversion between the audio signals, carried
on telephone circuits, and data packets, carried over the
Internet or over other packet networks. MGCP assumes a
call control architecture where the call control intelligence
is handled by the Call Agents, which have to synchronize
to send commands to the gateways under their control.
MGCP is, in essence, a master/slave protocol, where the
gateways are expected to execute commands sent by the
Call Agents. The MGCP interface is implemented as a set
of transactions composed of a command and a mandatory
response. There are eight types of commands:
CreateConnection, ModifyConnection, DeleteConnection,
NotificationRequest, Notify, AuditEndPoint,
AuditConnection and RestartInProgress. The first four
commands are sent by the Call Agent to a gateway. The
first command creates a connection between two
endpoints, using UDP (User Datagram Protocol) to define
the receiver capabilities of the participating endpoints. The
other three commands modify the properties of a
connection, terminate a connection, collecting statistics on
its execution, and request the media gateway to send
notifications on the occurrence of specified events in an
endpoint, respectively. The Notify command is sent by the
gateway to the Call Agent, to inform it about the events
occurred. The gateway may also send a DeleteConnection.
The Call Agent can send either the Audit commands to the
gateway, in order to determine the status of an endpoint or
retrieve the parameters related to a connection. Finally, the
gateway may send a RestartInProgress command to the
Call Agent to notify that an endpoint or group of endpoints
are in, or out of, service. All commands are composed of a
command header, optionally followed by a session
description. All responses are composed of a response
header, optionally followed by a session description.
Headers and session descriptions are encoded as a set of
text lines, separated by a carriage return and line feed
character. Headers and session descriptions are separated
by an empty line. MGCP uses a transaction identifier to
correlate commands and responses; header and command
lines are composed of strings of printable ASCII
characters, separated by white spaces. In detail, the JNP
has been developed in order to use not the whole set of
MGCP commands, but only four of them: Notification

Request (NTRQ), to encapsulate commands coming from
the Traffic Handler, inside the VoIP board, and directed to
the IP phones, Notify (NTFY), to encapsulate the IP phone
signalling information for the Traffic Handler,
AuditEndPoint (AUEP) used for diagnostic purposes,
RestartInProgress (RSIP), which is used by the IP phones
to ask for a connection with the VoIP Gateway and sent by
the Gateway to force the disconnection of the terminals, if
an error event occurs. The overall architecture of the
system is strongly centralized: all operations are managed
by the software module within the VoIP Gateway board,
the Call Agent, which tells the IP phones the actions to be
performed.

3. THE IP TELEPHONY FRAMEWORK

In order to implement the MGCP specifications, JNP has
been developed on a strongly modular basis, which allows
an efficient software management and a simplified
updating process; moreover, this structure, which is
depicted in Fig.1, fits very well the object-oriented nature
of Java. Four of the five software modules are devoted to
signalling and user interaction management; the fifth has
to handle the audio resources and the bidirectional RTP
(Real Time Protocol) transmissions between the software
application and the DSP on board of the VoIP Gateway.
The Network Stack Interface (NSI) acts as an interface for
the signalling exchange between the Java application and
the VoIP Gateway, in order to correctly receive and
transmit the UDP datagrams on the network. The MSPU
(MGCP Signaling Protocol Unit) module interprets the
MGCP messages coming from the CA through the NSI,
generates the messages to be transmitted and sets different
timers necessary to control some functions, like those
related to diagnostic operations. The UIU (User Interface
Unit) executes the remote commands coming from the CA
and generates the commands due to the user’s actions on
the graphical interface; the GUI (Graphic User Interface)
allows a user friendly interaction with the JNP. Both the
GUI and UIU also interface a relational DataBase (DB) by
means of a Java wrapper for Access databases. The DB,
which is managed by SQL queries, is used to implement
all services related to the user’s contacts management, like
the Address Book and the Call Register. The RTP unit
handles all the acquisition and processing operations
related to the voice samples, by means of the G.711 A-law,
G.729 and G.723 audio codecs, managing the vocal
sessions and the transmission of RTP packets. The
connection among the GUI and the RTP modules,
introduced to allow the user to control both the speakers
and the microphone settings, involves the linking between
the GUI and the Java classes which implement audio and
ring management, denoted as MainVoiceEngine and Ring.
These two classes are created by the JavaNetPhone class;
then, the GUI is instantiated, and the two classes are
passed as parameters to its constructor. With the aim of
making the whole application as much efficient and time
and CPU low consuming as possible, its software

Fig. 1: The JNP modular structure

architecture has been significantly optimized. In the NSI a
single thread is used to listen to the UDP socket; two
threads are used in the RTP module to allow full duplex
communications. Finally, two threads are used to manage
incoming and outgoing data through the buffers connected
to the MSPU module. All the other elements have been
designed by means of Java methods and classes, avoiding
any infinite cycle which could make the JNP heavily
resource-consuming and eventually incompatible with
other applications concurrently running on the same
machine. As any other communication device connected to
the PBX managing the IP telephony service on the LAN,
the JNP acts on the basis of a finite states machine [2],
depicted in Fig. 2, which is controlled by the Call Agent, in
the sense that the transitions among the three admitted
states (Connected, Connected Waiting for ACK and Not-
Connected) depend on the response of the application to
the commands coming from the Call Agent, or on local
timers’ expiration. When the JNP is running, the MSPU
starts from the Not Connected state; in order to establish a
connection with the Call Agent, an explicit query is sent,
by the generation of an RSIP packet. The Call Agent will
identify the JNP, and will give it the possibility of
establishing a connection, by means of a series of
parameters that the user can set by acting on a
configuration panel available through the GUI. If the
MSPU receives an ACK (positive response), it stores a
number of parameters sent by the Call Agent and passes
into the Connected state; otherwise, it waits 30 seconds
and retransmits another request for connection. There is
not a limit on the number of connection requests that can
be sent. In order to maintain the connection active and the
state Connected, the MSPU module must periodically
receive an AUEP command from the Call Agent; if the
AUEP command is not received after a maximum time
delay (Tmax), the state becomes Not Connected . When
connected, the JNP receives a number of commands
encapsulated inside NTRQ packets necessary to handle the
call. Their processing is left to the UIU module. Only
when the MSPU module is in the Connected or Connected
Waiting for ACK states, the application processes the
NTRQ packets; otherwise, all the information coming
from the Call Agent is ignored. When the MSPU is
connected, it can deliver all signalling information due to
the actions performed by the user to the Call Agent,
enclosed in NTFY packets. If the user performs a call, the
NTFY packets generated by the keyboard buttons are sent

to the Call Agent. The MSPU passes into the Connected
Waiting for ACK state, until the ACK arrives from the Call
Agent, after 1 second. If the ACK arrives, the state
becomes Connected, otherwise the NTFY packets are sent
again, up to 10 times; if the maximum number of NTFY
transmissions is reached, without a positive response from
the Call Agent, the state becomes Not Connected and the
MSPU has to re-negotiate a new connection.

4. THE IP TELEPHONY FUNCTIONS IN JNP

The functionalities implemented in JNP can be easily
located on its GUI, which is shown in Fig. 3. Besides
starting and terminating a phone call, the hold and retrieve
options are also available. The VoIP Gateway can provide
the hold/retrieve functions for either incoming and
outgoing calls, managing the activation or deactivation of
the audio circuits, holding the suspended calls, transmitting
the proper tone to the held user and to the one who
requested the transmission. On the other hand, the IP
terminal has to send the appropriate bytes and perform the
commands sent by the CA. The hold/retrieve functions in
the JNP are performed by the Java classes built to manage
the hook panel and the UIU module. By acting on the GUI,
the user updates the Java method which is listening to the
events related to the hook panel; the Java interface
VNIKeyMapping.class associates the user’s actions on the
keyboard to the suitable sequence of bytes to be
transmitted to the CA. All settings and parameters which
can be configured by the user are located on a
configuration panel. In order to allow the connection
between the JNP and the CA, the network parameters must
be set: the IP address of the CA and the RTP port number.
Every time one of these parameters is changed, the
updated value is saved in a configuration file, used to ask
for a new connection. The configuration panel is
implemented by extending the properties of the class
javax.swing.JFrame; by means of the ActionListener
interface, the values input by the user are read and stored
in a file. The user can then configure the speaker device
and the ringer device; this way it is possible, for instance,
to handle a phone call on a USB or Bluetooth headset,
while having the phone ring on the PC speakers. The
speakers’ volume can be set manually, while the choice of
the microphone in use (desktop or wearable) automatically
determines the amplification of the captured voice signal.
In fact, while the user can easily check his speakers’

 Fig. 2: The JNP finite states machine

Fig. 3: The JNP GUI

volume, it could be very difficult and maybe ineffective
trying to adjust the proper microphone settings on the basis
of the subjective feedback information coming from the
remote end user. Moreover, the volume of the transmitted
voice signal can strongly depend on the underlying audio
settings of the Operating System in use. This is the reason
why an Automatic Gain Control (AGC) algorithm has
been implemented, according to the type of microphone
adopted, which automatically sets the coefficients used to
amplify the voice samples coming from the microphone,
before they are inserted in the RTP packets’ payload. The
GUI module invokes the constructor method for the class
VolumeSpeaker.class, which manages the outgoing audio,
deriving all its properties from the class JPanel in the
javax.swing package. All events of the type ChangeEvent
and ActionEvent, generated by the user’s actions, are
listened to and processed by the class GUI.class, by means
of its reference which is also an argument of the
constructor method for VolumeSpeaker.class. Also a Voice
Activity Detection (VAD) scheme has been implemented
in order to distinguish the speaker’s voice from the
background noise and avoid packets transmission when
not necessary. Under the assumption that the JNP running
on a given machine will be probably used again with the
same audio hardware equipments, the state variables
associated to the microphone selection and the gain are
initiated to the same values they had in the last session.
During the first execution of JNP, all these options are set
to default values; then they must be properly configured by
the user. If one of these configuration parameters is
changed by the user, the Java audio classes of the type
MainVoiceEngine are re-initialized. The Address Book and
the Call Register provide the user some advanced services
typically available on mobile phones, as the opportunity to
store contacts’ details (name, phone number) and to
quickly activate a call, to check the lists of all the calls lost,
performed and answered, to clean them or search for a
specific one. All these functions are performed by making
reference to a relational DB, developed by means of
Microsoft Access ®, which has to be loaded on the PC
running JNP.

5. PROTOTYPE EVALUATION

Java has emerged as one of the most popular programming
languages for Internet applications, being platform
independent, simple to use and able to natively support
multithreading and multitasking. JNP has been entirely
developed in Java, by means of the J2SDK 1.5.0: it can run
on any platform having a JVM (Java Virtual Machine)
installed. We have tested JNP on different hardware and
O.S.s (e.g. Pentium III 1000 MHz, 192 MB RAM); even if
many factors, such as the CPU clock and the hardware
facilities, can affect the performance, the results obtained
are quite positive. Tests have shown that when the call is
established, 10%-20% of the CPU resources are used, so
that other software tools available to the user on the same
PC can be effectively run at the same time. In real-time
communications, two main metrics are considered: the call
set-up time and the media delay time. We have tested our
application in a network consisting of a PBX equipped
with the VoIP board, some PCs running JNP, other PCs
online, hardware IP phones, digital and PSTN telephones.
In all our tests, the operations related to signalling
exchange have been correctly executed with no any
additional call set-up time besides the one required by the
MGCP, according to which the connection is enabled by
the CA after a random starting delay. The control functions
related to the speakers and the microphone make the audio
performance of the JNP almost uniform, when tested over
different hardware platforms and equipments; all the
possible configurations between holding and active
terminals have been tested on the network and properly
managed.

REFERENCES

[1]F. Andreasen, B. Foster, “The Media Gateway Control
Protocol (MGCP) Version 1”, RFC3435, January 2003.
[2]S. Spinsante, E. Gambi, A. Perotti, A. Vespasiani “A
Java Based VoIP Application: Extending LAN Telephony
Facilities in a MGCP Framework”, Proc. 2004 IEEE 6 th
Workshop on Multimedia Signal Processing, Siena, Italy,
29 September – 1 October 2004.

	Index
	EUSIPCO 2005

	Conference Info
	Welcome Messages
	Sponsors
	Committees
	Venue Information
	Special Info

	Sessions
	Sunday 4, September 2005
	SunPmPO1-SIMILAR Interfaces for Handicapped

	Monday 5, September 2005
	MonAmOR1-Adaptive Filters (Oral I)
	MonAmOR2-Brain Computer Interface
	MonAmOR3-Speech Analysis, Production and Perception
	MonAmOR4-Hardware Implementations of DSP Algorithms
	MonAmOR5-Independent Component Analysis and Source Sepe ...
	MonAmOR6-MIMO Propagation and Channel Modeling (SPECIAL ...
	MonAmOR7-Adaptive Filters (Oral II)
	MonAmOR8-Speech Synthesis
	MonAmOR9-Signal and System Modeling and System Identifi ...
	MonAmOR10-Multiview Image Processing
	MonAmOR11-Cardiovascular System Analysis
	MonAmOR12-Channel Modeling, Estimation and Equalization
	MonPmPS1-PLENARY LECTURE (I)
	MonPmOR1-Signal Reconstruction
	MonPmOR2-Image Segmentation and Performance Evaluation
	MonPmOR3-Model-Based Sound Synthesis (I) (SPECIAL SES ...
	MonPmOR4-Security of Data Hiding and Watermarking (I) ...
	MonPmOR5-Geophysical Signal Processing (I) (SPECIAL S ...
	MonPmOR6-Speech Recognition
	MonPmPO1-Channel Modeling, Estimation and Equalization
	MonPmPO2-Nonlinear Methods in Signal Processing
	MonPmOR7-Sampling, Interpolation and Extrapolation
	MonPmOR8-Modulation, Encoding and Multiplexing
	MonPmOR9-Multichannel Signal Processing
	MonPmOR10-Ultrasound, Radar and Sonar
	MonPmOR11-Model-Based Sound Synthesis (II) (SPECIAL S ...
	MonPmOR12-Geophysical Signal Processing (II) (SPECIAL ...
	MonPmPO3-Image Segmentation and Performance Evaluation
	MonPmPO4-DSP Implementation

	Tuesday 6, September 2005
	TueAmOR1-Segmentation and Object Tracking
	TueAmOR2-Image Filtering
	TueAmOR3-OFDM and MC-CDMA Systems (SPECIAL SESSION)
	TueAmOR4-NEWCOM Session on the Advanced Signal Processi ...
	TueAmOR5-Bayesian Source Separation (SPECIAL SESSION)
	TueAmOR6-SIMILAR Session on Multimodal Signal Processin ...
	TueAmPO1-Image Watermarking
	TueAmPO2-Statistical Signal Processing (Poster I)
	TueAmOR7-Multicarrier Systems and OFDM
	TueAmOR8-Image Registration and Motion Estimation
	TueAmOR9-Image and Video Filtering
	TueAmOR10-NEWCOM Session on the Advanced Signal Process ...
	TueAmOR11-Novel Directions in Information Theoretic App ...
	TueAmOR12-Partial Update Adaptive Filters and Sparse Sy ...
	TueAmPO3-Biomedical Signal Processing
	TueAmPO4-Statistical Signal Processing (Poster II)
	TuePmPS1-PLENARY LECTURE (II)

	Wednesday 7, September 2005
	WedAmOR1-Nonstationary Signal Processing
	WedAmOR2-MIMO and Space-Time Processing
	WedAmOR3-Image Coding
	WedAmOR4-Detection and Estimation
	WedAmOR5-Methods to Improve and Measures to Assess Visu ...
	WedAmOR6-Recent Advances in Restoration of Audio (SPECI ...
	WedAmPO1-Adaptive Filters
	WedAmPO2-Multirate filtering and filter banks
	WedAmOR7-Filter Design and Structures
	WedAmOR8-Space-Time Coding, MIMO Systems and Beamformin ...
	WedAmOR9-Security of Data Hiding and Watermarking (II ...
	WedAmOR10-Recent Applications in Time-Frequency Analysi ...
	WedAmOR11-Novel Representations of Visual Information f ...
	WedAmPO3-Image Coding
	WedAmPO4-Video Coding
	WedPmPS1-PLENARY LECTURE (III)
	WedPmOR1-Speech Coding
	WedPmOR2-Bioinformatics
	WedPmOR3-Array Signal Processing
	WedPmOR4-Sensor Signal Processing
	WedPmOR5-VESTEL Session on Video Coding (Oral I)
	WedPmOR6-Multimedia Communications and Networking
	WedPmPO1-Signal Processing for Communications
	WedPmPO2-Image Analysis, Classification and Pattern Rec ...
	WedPmOR7-Beamforming
	WedPmOR8-Synchronization
	WedPmOR9-Radar
	WedPmOR10-VESTEL Session on Video Coding (Oral II)
	WedPmOR11-Machine Learning
	WedPmPO3-Multiresolution and Time-Frequency Processing
	WedPmPO4-I) Machine Vision, II) Facial Feature Analysis

	Thursday 8, September 2005
	ThuAmOR1-3DTV (I) (SPECIAL SESSION)
	ThuAmOR2-Performance Analysis, Optimization and Limits ...
	ThuAmOR3-Face and Head Recognition
	ThuAmOR4-MIMO Receivers (SPECIAL SESSION)
	ThuAmOR5-Particle Filtering (SPECIAL SESSION)
	ThuAmOR6-Geometric Compression (SPECIAL SESSION)
	ThuAmPO1-Speech, speaker and language recognition
	ThuAmPO2-Topics in Audio Processing
	ThuAmOR7-Statistical Signal Analysis
	ThuAmOR8-Image Watermarking
	ThuAmOR9-Source Localization
	ThuAmOR10-MIMO Hardware and Rapid Prototyping (SPECIAL ...
	ThuAmOR11-BIOSECURE Session on Multimodal Biometrics (...
	ThuAmOR12-3DTV (II) (SPECIAL SESSION)
	ThuAmPO3-Biomedical Signal Processing (Human Neural Sys ...
	ThuAmPO4-Speech Enhancement and Noise Reduction
	ThuPmPS1-PLENARY LECTURE (IV)
	ThuPmOR1-Isolated Word Recognition
	ThuPmOR2-Biomedical Signal Analysis
	ThuPmOR3-Multiuser Communications (I)
	ThuPmOR4-Architecture and VLSI Hardware (I)
	ThuPmOR5-Signal Processing for Music
	ThuPmOR6-BIOSECURE Session on Multimodal Biometrics (I ...
	ThuPmPO1-Multimedia Indexing and Retrieval
	ThuPmOR7-Architecture and VLSI Hardware (II)
	ThuPmOR8-Multiuser Communications (II)
	ThuPmOR9-Communication Applications
	ThuPmOR10-Astronomy
	ThuPmOR11-Face and Head Motion and Models
	ThuPmOR12-Ultra wideband (SPECIAL SESSION)

	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Ö
	Ø

	Papers
	Papers by Session
	All papers

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	Copyright
	About
	Current paper
	Presentation session
	Abstract
	Authors
	Alessio Perotti
	Aldo Vespasiani
	Ennio Gambi
	Franco Chiaraluce
	Susanna Spinsante

