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ABSTRACT
In the present work we consider the problem of detection
and characterization of ultrasonic echoes due to scatter-
ing on bubbles. A good knowledge of this phenomena
will help us in the future to develop low false alarm de-
tectors.

The nonlinear / non-Gaussian nature of this echoes
suggest the use of surrogate data for detection with some
modifications. Several nonlinear metrics (classical and
higher order statistics based) will be evaluated. An ex-
periment will be done in order to check the proposed
technique on real data.

1. INTRODUCTION

Signal processing of ultrasonic signals is a well estab-
lished research topic. Many different applications take
advantage of recent studies in this area: crack detection,
foreign bodies detection, material characterization, are
some of them. Most of the algorithms involved in these
applications assume linearity of the processes. Although
this is normally true if certain conditions are met, there
are several situations where linearity can not be assumed
(ultrasonic near field, ultrasonic pulse travelling through
a bubble field are some examples). It is then interest-
ing to test how nonlinearity detection algorithms, work
on ultrasonic signals. The use of this nonlinearity de-
tection algorithms are not only valid for knowing when
linear models can not be employed, but also the pres-
ence/ absence of nonlinear nature of the signal conveys
information that can be valuable for classification/ de-
tection purposes.

In this work we are going to apply nonlinearity de-
tection techniques as an indicator for bubble presence
on a liquid when insonified by an ultrasonic pulse. As
it was demostrated in [1] bubbles of a given diameter
act as resonators in presence of an ultrasonic field. This
resonating bubbles emit ultrasonic signals of twice the
driving frequency (second harmonic) and thus can be
modelled and detected as a nonlinearity in the recorded
signal.

2. BUBBLE RESONANCE
CHARACTERIZATION

During exposure to a low power acoustic field, effects
of ultrasonic cavitation are mainly induced by resonant
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bubbles. According to [1] the following expression ap-
plies for resonance frequencies (higher or equal than 1
MHz) of small bubbles.
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Where Rr is the radius (in metres) of the bubbles that
resonate at pulsationωr. In case of air bubbles in water
at atmospheric pressure (ρ = 103 kg m−3, γ=1.40, P0=1
atm=105 Nm2,σ=7.2·10−2 Nm−2) we can plot equation
(1) in figure 1. In this figure it can be seen, for in-
stance, that bubbles of Rr=3.7 µm resonate at 1 MHz.
Bubbles of this size will resonate at this frequency and
its harmonics. The strongest harmonic that can not be
confused with energy backscattered from other sources
is the second order harmonic, so a detection method
based on this fact was devised by [2].

From the signal processing point of view, bubbles act
as non-linearities that generate harmonics of its resonant
frequency.
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Figure 1: Electrolysis generation of bubbles and signal
acquisition

3. NONLINEARITIES
CHARACTERIZATION ON ULTRASONIC

BUBBLE ANALYSIS

A linear signal can be generated by an autoregressive
(AR) model driven by normally distributed, white noise.



As it was proven in [3] ultrasonic signals coming from
backscattering phenomena can be modelled in this way
using K-distributed noise instead of Gaussian.

It is a very common practise the use of surrogate data
technique in testing for nonlinearity. Surrogate data are
time series artificially generated by a stationary Gaus-
sian linear stochastic process, in such a way that they
have similar spectrum (or autocorrelation function) to
the original time series under test [4, 5]. Care should
be taken when this surrogate tests are used, due to
the fact that the test hypothesis is “Gaussian linea-
rity” rather than linearity alone. Here we will use the
iAAFT method (Schreiber and Schmitz, 1996) for surro-
gate generation. The iAAFT surrogates have matching
amplitude spectrum and signal statistical distribution
so it can be used when the processes do not follow a
Gaussian distribution [6]. But this method has a lim-
itation, it only can be used when the linear stochastic
non-Gaussian distribution that drives the AR-model can
be obtained by a static, monotonic, memory-less trans-
formation of a Gaussian process (figure 2). Fortunately
K-distributed noise can be obtained this way.

Hence the null hypothesis here used will be, that
the process is generated by an AR model driven by any
noise that can be obtained by a static transformation
(possibly non-linear) of Gaussian noise (for instance K-
noise).

With these restrictions the algorithm will be as fol-
lows: (i) a significant set of surrogate series are artifi-
cially generated with the iAAFT algorithm, (ii) statis-
tics sensitive to nonlinearity are determined on both sur-
rogate and original series and (iii) if the statistics of the
surrogate are significantly different from the original se-
ries, the null hypothesis that the original data are gener-
ated by a stationary linear stochastic process is rejected.

As a simple statistic that gives information on non-
linearity, we choose a measure for time-reversibility [7],
which is just the skewness of the slopes normalized by
the standard deviation of the slopes taken to the third
power (σ3).

tREV =
1

σ3 · (N − 1)
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)3
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For a times series generated by a linear process, and
for the surrogates, we expect tREV ≈ 0. In contrast,
time series with nonlinearities can be asymmetrical in
time and may yield values of tREV > 0 and tREV < 0,
a two tailed test [6] has to be performed.

Another traditional nonlinearity metric is the third
order autocovariance [6], which is a higher order exten-
sion of the traditional autocovariance (a slice of the third
order moment estimation). It is given by,

tC3(τ) = 〈y[n]y[n − τ ]y[n − 2 · τ ]〉 = m̂om
y
3(τ, 2·τ) (3)

where (τ) is set to unity for simplicity. Again a two
tailed test has to be performed.

4. EXPERIMENTATION

4.1 Bubble generation method

Microscopic bubbles were generated using electrolysis as
it is shown in figure 3. We employed graphite electrodes
connected to a 9 V DC power supply. Ultrasonic trans-
ducers of 1 MHz (K1SM transducer from Krautkramer
& Branson) nominal frequency were placed on non-
opposite faces of a water tank, one acting as emitter
and one as receiver.

Transmiter
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Receiver
Ultrasonic
Transducer

9 V

.

Figure 3: Electrolysis generation of bubbles and trans-
ducer layout

An ultrasonic pulser/receiver from Matec Instru-
ments PR500 has been employed with pulser parameters
as follows (PRF=76.3 %, pulse width 10 µs, frequency 1
MHz, amplitude 10 %) and with receiver gain of 40dB.
Received signals were acquired with the Tektronix 3000
oscilloscope (fs=50 MSamples/s). The plots of the sig-
nals can be seen on figure 4 where it can be seen that
in spite of the non-faced transducers layout we receive
some signal when bubbles are not present, this is due to
the backscatter of the ultrasound in the chamber walls.
When bubbles are present, the signal received comes
mainly from ultrasonic energy scattered by bubbles.

Power spectral density has been estimated via Welch
method. We used 1000 points of the original register
and a 500 points Hamming window. The estimates were
computed for the signals when no bubbles were present
and when electrolysis generated bubbles were present.
The power spectral density evidences the presence of
a non-linearity. Frequency components that were not
present without bubbles appear when ultrasonic signal
goes through the bubble field. As was stated in sec-
tion 2 the dispersive component sensed by the ultrasonic
transducer is due to the resonant bubbles. The main
frequency appears to be at f0=0.65 MHz, slightly devi-
ated from the nominal transducer frequency of 1 MHz.
This could be due to selective attenuation of ultrasonic
signals (absorption effects, beam divergency or scatter-
ing). Resonance frequencies appear to be at fri

= { 1.2,
2.1 and 3.6 } MHz (see figure 5) only when bubbles are
present. These resonance frequencies can be approxi-
mately modelled by powers of,
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Figure 2: Proposed algorithm for bubble detection on ultrasonic signals
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Figure 4: Signals acquired with and without bubble
presence
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Figure 5: Power spectral density estimation via Welch
method

fri
≈ f0 · (1.8)i (4)

where all frequencies are given in MHz.
Let us focus now on the possibility of nonlinearity

detection by the nonlinearity metric and the surrogate
tests. The statistics of tREV compared to that of sur-
rogates by means of a two tailed test with confidence
interval of 95 % allow us to reject the null hypothesis
when bubbles are present (see table 1). On the other
hand the nonlinearity metric tC3 does not allow us in
this case to reject the null test hypothesis (see table 2).

E{tREV } std{tREV }
Original 0.50277 0
Surrogate -0.0081 0.1424

Table 1: Mean and standard deviation of the tREV test
for original data and for surrogates

E{tC3} std{tC3}
Original 8.55e+10 0
Surrogate 5.48e+10 5.3e+09

Table 2: Mean and standard deviation of the tC3 test
for original data and for surrogates

A more computational complex alternative for non-
linearity testing is computing the bicoherence. Bicoher-
ence contains third order moments information (as tC3)
normalized by second order information and working in
frequency domain. Bicoherence should be zero for Gaus-
sian processes and should be a constant value for linear
non Gaussian processes. When applied to signals ac-
quired when bubbles where present we get nonzero non-
constant bicoherences showing the nonlinear nature of
the process (see figure 6). The poor results of the au-
tocovariance tests (as tC3) are due to the fact that the
lag τ where it has been computed does not contain in-
formation of the nonlinearity. Other values of τ or the
whole bicoherence should be chosen as a good nonlin-
earity metric.



.

Figure 6: Bicoherence estimation of the signals when
bubbles are not present (upper diagonal) and when bub-
bles are present (lower diagonal)

5. CONCLUSIONS AND FUTURE WORK

The main results of this paper, related to detection/
modelling of nonlinearities caused by bubbles, are listed
below. The topic is crucial for ultrasonic signal analysis
when helping to distinguish between echoes from bub-
bles and any other target that we are willing to detect.
(i) Harmonics in ultrasonic signals due to bubble reso-

nance have been detected and modelled. This phe-
nomena has been studied with success from the non-
linearity detection point of view.

(ii) We have proven by means of hypothesis tests that
traditional metric based on time-reversibility is ca-
pable of detection. On the other hand, third order
autocovariance fails when detecting the nonlinearity
nature of ultrasonic signals obtained by dispersion
on bubbles.

(iii) Nonlinearity metrics based on bicoherence seem to
be a good option for bubble detection on ultrasonic
signals but further work should be done.
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