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ABSTRACT

In this paper, two candidates for a next generation (4G) downlink
system in a multi-cell environment are studied in respect to their
error performance. We investigate on the one hand, an orthogo-
nal frequency division multiplexing (OFDM) based multiple access
scheme (OFDMA), and on the other hand, a multi-carrier code di-
vision multiple access (MC-CDMA) scheme. The studies of both
transmission schemes are done in a cellular structure. The cellular
environment model takes into account path loss and shadowing de-
pending on the position of the mobile terminal. To enhance the per-
formance of OFDMA, we introduce a radio resource management
(RRM). Error performances are given to compare the two multiple
access proposals. The results show that OFDMA outperforms MC-
CDMA at the edge of the cell for low resource loads by using the
RRM. In the inner part of the cell, OFDMA can gain up to 0.5 dB
at a target bit error rate of 1073 in a fully-loaded system. For a
not fully-loaded system, MC-CDMA surpasses the OFDMA perfor-
mance by utilizing its whole diversity of used sub-carriers. In this
scenario, MC-CDMA can even gain 2 dB compared to OFDMA.

1. INTRODUCTION

Currently, there are several ongoing research projects regarding the
design and development of a high flexible and scalable next gen-
eration (4G) mobile radio access concept with respect to high data
rates and spectral efficiency. For this 4G system several attractive
candidates of transmission schemes exists [1-3]. They are based on
orthogonal frequency division multiplexing (OFDM) [4].

A major benefit of OFDM is the robustness against multipath
propagation channels, and therefore, high data rate transmissions
are possible. Furthermore, OFDM is a low-complex technique to
modulate multiple sub-carriers in a bandwidth-efficient way. The
assignment of one or several sub-carriers to each user in an OFDM
system leads to the multiple access scheme OFDMA. Contrary
to OFDMA, the multi-carrier code division multiple access (MC-
CDMA) scheme transmits in parallel chips of a spread data symbol
on different sub-carriers [1]. In OFDMA, user-data symbols are al-
located directly to channel resources and therefore offers no diver-
sity without channel coding but adaptive transmission is possible.
In contrast, an MC-CDMA transmission scheme spreads the user-
data symbol energy over all channel resources and therefore offers
diversity.

It is necessary to extend investigations to more realistic sce-
narios, i.e., cellular structures. Therefore, this paper includes a
distance-dependent propagation model for each impinging signal
over all cells. Since each user allocates its own sub-carriers in an
OFDMA system, each OFDMA system per cells can be managed
by a radio resource management (RRM) for better performances.

This paper investigates and discusses the two technologies in
anticipation of 4G requirements. It is the goal to make first state-
ments of a comparison between MC-CDMA and OFDMA in a cel-
lular structure regarding the error performances and the Ey, /Ny per-
formance at a target bit error rate (BER) of B, = 1073.

The outline of this paper is as follows. The next section in-
troduces the used multi-carrier systems, including the transmitter,
receiver, and assumed channel model. Section 3 describes in more
detail the model for the different propagation impairments affecting
the cellular system and the used RRM for OFDMA. The cellular
interference modeling is also in the focus of that section. Finally in

Section 4, we provide error and E}, /Ny performances for the used
transmission schemes in a multi-cell environment.

2. MULTI-CARRIER SYSTEMS

The transmitter and receiver of an OFDMA and MC-CDMA trans-
mission scheme differ only in the sub-carrier allocation and the
additional spreading and detection component for MC-CDMA. In
this paper, the terminology, notation, and description is identical for
both systems, and the differences are pointed out in this section.

The block diagram of a transmitter using OFDMA/MC-CDMA
is shown in Figure 1. The information bit stream of the N, active
users are convolutionally encoded and interleaved by the outer in-
terleaver oy With respect to the modulation alphabet, the bits are
mapped to complex-valued data symbols. In the sub-carrier alloca-
tion block Ny symbols per user are arranged for each transmission
scheme. In the case of MC-CDMA, the kth data symbol is multi-
plied by a user-specific Walsh-Hadamard spreading sequence which
provides so-called chips. The spreading length L corresponds to the
maximum number of active user L = Ny max.

An inner sub-carrier interleaver ;, allows a better exploitation
of diversity. The input block of the interleaver is denoted as one
OFDM symbol and Ny OFDM symbols describe one OFDM frame.
By taking into account a whole OFDM frame, a two-dimensional
interleaving in frequency and time direction is possible.

Finally, an OFDM modulation is performed which includes an
inverse fast Fourier transformation (FFT) and insertion of a guard
interval to avoid inter-symbol and inter-carrier interference.

On the receiver side, see Figure 2, the transmitter signal pro-
cessing is inverted.

In MC-CDMA the distortion due to the flat fading on each sub-
channel is compensated by equalization. The received chips are
equalized by using a linear minimum mean square error (MMSE)
one-tap equalizer. The resulting MMSE equalizer coefficients are
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where o2 is the actual variance of the additive white Gaussian
noise (AWGN) process and Hl(j) is the channel transfer function

from base station (BS) j to the mobile terminal (MT). Furthermore,
N, is the number of sub-carriers and the indices j and i represent
the OFDM symbol and sub-carrier, respectively. In contrast, for
OFDMA the data symbols can be directly demodulated with the
knowledge of Hl(;g).

Then the symbol demapper maps the data symbols to bits. In
addition, it calculates the log-likelihood ratio for each bit based on
the selected alphabet. The code bits are deinterleaved and finally
decoded using soft-decision Viterbi decoding [1].

For the multi-carrier schemes a resource load (RL) can be de-
fined. For the OFDMA system, the RL is the ratio of the number of
assigned sub-carriers to the total number of available sub-carriers
N¢. This corresponds directly to the RL of the MC-CDMA system,
which is defined by the ratio of the number of active users to the
number of maximum users. Note that in terms of total transmitted
signal energy, the following relation holds

N,
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Figure 1: OFDMA/MC-CDMA transmitter of the jth base station
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Figure 2: OFDMA/MC-CDMA receiver

Figure 3: One-tier multi-cell environment
2.1 Channel Model

The mobile radio channel is assumed to be a time-variant,
frequency-selective fading channel. It is modeled by a tapped delay-
line with Q¢ non-zero taps [5]. We consider that the Oy channel taps
are mutually uncorrelated and all tap delays Té’ ) are in the range
[0, Tmax]. The channel fading is assumed to be a wide-sense sta-
tionary uncorrelated scattering (WSSUS) random process, i.e., the
channel has a fading statistic that remains constant over a period of
time [6].

3. MULTI-CELL ENVIRONMENT

A typical hexagonal structure is assumed for the cellular network
where all cell sizes are equal as depicted in Figure 3. A whole tier of
interfering cells around the desired cell is assumed. The BS and the
MT are perfectly synchronized in time and frequency. The distance
between the desired BS and MT is denoted as dj, and the cell radius
r is normalized to 1. For example, the mobile can be situated along
a line from the desired BS to the intersection of the desired cell and
two interfering cells. In this case, the angle o« = 30°. A propagation
model represents the locally averaged received energy from the jth
BS at the MT. The slowly varying signal energy attenuation due to
path loss is generally modeled as the product of the yth power of
distance d; and a log-normal component representing shadowing
losses [7]. Therefore the resulting received signal energy is

E;=Ey; d;y 1()71/'/10dB7 3)

where E ; is the transmitted signal energy from the jth BS. The
path decay factor y is assumed to be 4 and the standard deviation
of the Gaussian-distributed shadowing factor 7; is set to 8 dB. The
cellular simulation environment is taken from [8].

3.1 Radio Resource Management for OFDMA

Introduction of a radio resource management for assigning sub-
carriers should maximize the performance in the case of OFDMA.
In a fully-synchronized system, it is possible to assign the sub-
carriers per BS in such a way that no double allocation of sub-
carriers between the BSs occurs. This can be guaranteed up to a
resource load of RL = 1/mggrm, Where mgry is the total number
of managed cells. The managed mgrry BSs need the same inner
interleaver , after the sub-carrier allocation. In spite of RRM, the
frequency diversity of the OFDMA system is preserved. The un-
managed cells use their own independent inner interleaver. By ex-
ceeding the RL, the succeeding assignment of sub-carriers is done in
such a way that the assigned sub-carriers per additional active user
are randomly distributed over the remaining sub-carriers. There-
fore, the probability that any user is entirely disturbed is reduced.

3.2 Cellular Interference Modeling

The cellular interference can be modeled as depicted in Figure 4.
The channels have the same Doppler power spectrum and delay
profile, but are uncorrelated. The ratio of the received signal en-
ergy from the desired BS and from an interfering BS ; is denoted

by E; = Ey/E;. Therefore, the interfering signals from BS(/) are
weighted with the energy factor 1/,/ E;.

By including the interfering BSs, the received /th OFDM sym-
bol at sub-carrier i becomes
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where Xl({ ) denotes the value of the ith sub-carrier in the /th OFDM

symbol at BS j and N;; is AWGN with zero mean and variance Ny.
This scenario represents a power-controlled desired user at distance
dy as well as power-controlled interfering cells.

In the case of MC-CDMA, the signals are passed to an MMSE
equalizer after the deinterleaving process in the receiver. The coef-
ficients in (1) have to be modified in such a way that the interfering
signals are assumed to be an additional noise variance term in the
denominator [8].
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Figure 4: Model of the cellular system

Table 1: Parameters of the transmission systems

Bandwidth B 101.25 MHz
# sub-carriers N 768

FFT length NrpT 1024

Guard interval length Nai 226

Sample duration Tsamp 7.4 ns
Frame length Nfame 04

# active users Ny {1...8}
Spreading length (MC-CDMA) L 8
Modulation QPSK
Channel coding CC (171,133) ¢t
Channel coding rate R 1/2

Channel coding memory Mcc 6

4. SIMULATION RESULTS

Table 1 illustrates the system parameters of the used transmission
systems. The used channel model is depicted in Figure 5, see also
Section 2.1, with an exponentially decaying power delay profile.
Corresponding to a mobile velocity of about 3 km/h at 5 GHz car-
rier frequency, each tap has a normalized maximum Doppler fre-
quency fDnorm,max = /D,max* Is = 14 Hz- 7.5 pis = 1074» where Tg
represents the OFDM symbol duration. These parameters are taken
from [9]. We assume perfect channel knowledge. In the case of
MC-CDMA, the spreading length is set to L = 8. Finally, for all
users in the simulations, £}, /Ny is defined by the average energy per
bit divided by the average noise power of AWGN.

For the following simulations, the interfering BSs have the
identical parameters as the desired BS which also includes the num-
ber of active users. The MT moves from the BS in an angle of
o = 30°. The statistics of the used distance dependent propagation
model remain constant over the period of one OFDM frame. The
two closest interfering BSs to the MT have the largest influence of
disturbance in a multi-cell environment [10]. Therefore, in the case
of RRM for OFDMA, the resources of the desired BS and the two
closest interfering BSs are managed, see also Section 3.1.

We show simulation results of a direct comparison between the

SfDnorm,max = 1074 AP decay between adjacent taps

Qo =12

Tmax = 177 Tsamp

AT =16 Tsamp time

AP=1dB Qo number of nonzero taps

AT tap spacing

Figure 5: Parameters of the used power delay profile of the channel
model
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Figure 6: BER versus resource load @ Ev,/Ny = 10 dB for an
OFDMA and MC-CDMA system in a multi-cell environment and
perfect channel estimation for two different d

two 4G proposals OFDMA and MC-CDMA in a cellular environ-
ment. Since the number of active users, the maximum number of
users, the data symbols per user, and the frame size are equal, the
comparison of the systems is fair in that case. Two scenarios are
always illustrated and discussed. Figure 6 presents the BER versus
the RL at £y, /Ny = 10 dB in each cell.

First scenario, dy = 0.4: Since interference is negligible for
do < 0.4 [10], the RRM does not enhance the OFDMA perfor-
mance. The OFDMA performance keeps almost constant by in-
creasing the RL in contrast to the performance of MC-CDMA. For
small RLs, MC-CDMA outperforms OFDMA by far because MC-
CDMA can utilize the whole diversity of all assigned sub-carriers.
Since the multiple access interference (MAI) increases for higher
RLs, the benefit of MC-CDMA reduces with increasing RL.

Second scenario, dy = 1.0: The MT is at the cell boundary,
where two interfering BS are at the same distance as the desired BS.
Thus, the cellular interference is maximal. Only in a small region
of lower RLs MC-CDMA gains in comparison to OFDMA without
RRM. At a RL of 3/8, the performances merge and keep constant.
OFDMA with RRM has a huge performance gain up to a RL =3/8.
The RRM can avoid any collision with the major interfering signals
from the neighboring cells up to a RL = 1/3.

In [8] and [10], it was shown that in the peripheral area of the
desired cell, a strong disturbance by the adjacent interfering cells
exists. In contrast, the core of the desired cell (dy < 0.4) obtains
a minimum of interference. Therefore, we see in Figure 6 a huge
performance degradation between the two scenarios dy = 0.4 and
do = 1.0. In the same way, the performances of Figure 7 are in-
fluenced. The BER is plotted as a function of the distance d for
different transmission schemes in the same multi-cell environment
at Ey,/Np = 10 dB in each cell. The performances show a distinc-
tively steeper slope for dy > 0.4.

The performance for OFDMA with RRM and an RL = 1/8 in
Figure 7 keeps roughly constant because no sub-carriers are dou-
bly allocated due to the RRM. A small performance loss exists, re-
sulting from the higher inter-cell interference. Again, MC-CDMA
outperforms OFDMA for RL = 1/8 in the inner cell area up to
do = 0.75. In contrast, OFDMA slightly exceeds the MC-CDMA
performance in the fully-loaded scenario because the MAI is the
major degradation factor of MC-CDMA. Since all sub-carriers are
allocated in the fully-loaded case, there is no difference between
OFDMA with RRM and without RRM.
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Figure 7: BER versus dy @ Ey/Ny = 10 dB for an OFDMA and
MC-CDMA system in a multi-cell environment and perfect channel
estimation for two different resource loads

Figure 8 shows performances of the two systems in terms of re-
quired E}, /Ny in all cells for achieving a target BER of B, = 1073 for
different resource loads. The performances are illustrated for £y, /Ny
versus the position of the MT. The fully-loaded scenario shows in
Figure 8(b) that only in the core of the cell the target BER can be
reached by an E}, /Ny between 7.5 dB and 8 dB for OFDMA. MC-
CDMA looses 0.5 dB versus OFDMA because of the high MAIL

In the case of RL = 1/8, Figure 8(a) shows quite the same be-
havior as the scenario of Figure 7. We see that the target BER can
be achieved in the whole cell for OFDMA with RRM. At the edge
of the cell, MC-CDMA and pure OFDMA cannot provide the BER.
OFDMA with RRM needs a higher E}, /Ny up to dy = 0.8 than MC-
CDMA. Furthermore, OFDMA has the same E}, /Ny level as in the
fully-loaded case. In contrast, MC-CDMA can gain up to 2 dB
compared to OFDMA.

It is to mention that the OFDMA system can be seen as per-
fectly designed by using RRM. In contrast, the used MC-CDMA
system does not exploit its full design potential. There is the possi-
bility of using iterative decoding and soft-interference cancellation
for the additional enhancing of the error performance [11]. A RRM
can also be implemented by using the M&Q-modification [1]. The
performance of MC-CDMA would consequently improve.

5. CONCLUSION

This paper handles two proposed transmission schemes for 4G sys-
tems, namely OFDMA and MC-CDMA. Simulations compare the
error and Ey, /Ny performance of these two in a cellular environ-
ment. The multi-cell scenario is described by a propagation model
for the path loss and shadowing is taken into account. In case of the
OFDMA system an idealized radio resource management is intro-
duced.

The simulations show that MC-CDMA can outperform ordi-
nary OFDMA in the case of varying resource loads. In the core
of the cell, MC-CDMA exploits the whole sub-carrier diversity and
outperforms OFDMA for resource loads smaller than 3 /4. The use
of the radio resource management for OFDMA can highly enhance
the OFDMA performance in the peripheral cell area and OFDMA
surpasses the MC-CDMA performance. Regarding the £y, /Ny be-
havior at a target BER of B, = 1073, the simulation results present
0.5 dB gain for OFDMA compared to MC-CDMA in a fully-loaded
system. In contrast, MC-CDMA can gain up to 2 dB in a lower-
loaded system.
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perfect channel estimation for two different resource loads
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