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ABSTRACT
In this paper, we present a subspace-based method for direc-
tion finding for radiolocation of localization of mobile sta-
tion. Indeed, an original partition of the data cross-spectral
matrix is proposed in order to use a small part of the observa-
tions to estimate the noise subspace projector without eigen-
decomposition, when the number of sensors of antennas is
very larger than the number of sources. Once, at least two
angles of arrival of the mobile station are estimated by two
different antennas, the position of the mobile is then calcu-
lated. Finally, to demonstrate the efficiency of the proposed
method, performance results are presented.

1. INTRODUCTION

Recently, there has been a great deal of interest in developing
mobile location systems for wireless communication systems
[1, 2]. The motivation is the interest in applications for in-
door/outdoor geolocation systems [1] or the localization of
mobile stations.
Most conventional location techniques use the signal being
transmitted by a mobile to determine its location [2]. Gener-
ally, the mobile’s signal is received at several receivers with
known positions. After reception, some characteristics of
that signal are combined with the known positions of the re-
ceivers and used to solve the mobile’s position. This could
be the angle of arrival, or the time of arrival of the signal.
For practical reasons, the reception points are usually exist-
ing base stations. This minimizes the extra equipment that
has to be added to the network to implement location [2].
One method for locating a mobile station is the measurement
of the line-of-sight (LOS) distance between the mobile and at
least three participating base stations [2]. Each distance mea-
surements generates a circle which is centered at the measur-
ing base station and which has a radius equal to the distance
between the mobile and a base station. In the absence of
any measurement error, the intersection of the three circles
unambiguously determines the location of the mobile.
Other method uses the estimates of angle of arrival from at
least two participating base stations. To estimate the direc-
tion of arrival of a mobile, the line of sight (LOS) is required.
In this paper, a direction finding method is presented. In-
deed, in the last decades, sources localization has received
great attention because of its potential applications in such
as in radar, sonar, communication, seismic, radiolocation and
medical signal processing. It has been shown that the second
order statistics contains sufficient information for the esti-
mation of the directions of arrival of existing sources. The
second-order statistics based approach is attractive and sim-
pler because it requires much less computation effort than the
high order statistics approach. Many moment-based channel

estimators belong to two different categories. The first in-
cludes those derived by matching the moments or the power
spectra in some optimal way. The second exploits the eigen-
structures of the second-order moments to obtain angles.
In order to estimate the mobile location with reducing the
computational load of finding of directions of arrival of a
mobile station with two antennas of very large number of
sensors, we propose in this paper a new method for the esti-
mation of the direction of arrival using subspace techniques
without eigendecomposition. To avoid eigendecomposition
calculations, a fast non-eigenvector algorithm is described in
this contribution. This method provides a substantial saving
in terms of computational load. Here, we make use of a new
version of the propagator [4, 5], an operator that uses the lin-
ear dependence between the columns of the channel matrix,
so that the noise subspace can be determined without eigen-
decomposition of the cross-spectral matrix of data.

2. PROBLEM FORMULATION

Consider an array of N sensors which received the wavefield
generated by P narrow-band sources in the presence of an
additive noise.
The signal received by the antenna array, in time domain, can
be written as:

r(t) =
P

å
k=1

h(q k)sk(t)+n(t) = H(Q )s(t)+n(t) (1)

The received signal, in the frequency domain, is given by:

r( f ) = H( f , Q )s( f )+n( f ), (2)

where, r( f ) is the Fourier Transform of the array output
vector, s( f ) is the (P× 1) vector of complex signals of
P wavefronts, s( f ) = [s1( f ) s2( f ) ... sP( f )]T . n( f )
is the (N × 1) vector of additive noise in sensors, n( f ) =
[n1( f ) n2( f ) ... nN( f )], and H( f , Q ) is the (N × P)
transfer matrix of the source-sensor array systems with re-
spect to some chosen reference point:
H( f , Q ) = [h( f , q 1), ...,h( f , q P)] and Q = [q 1, q 2, ..., q P]T .
h( f , q i) is the steering vector of the array toward the direc-
tion q i at the frequency f . For example, the steering vector
of a linear uniform array with N sensors is given by:

h( f , q i) = 1√
N

[
1,e jf i ,e2 jf i , ...,e(N−1) jf i

]T
, where f i =

2p f d
c sin(q i); d is the sensor spacing; q i is the direction of

arrival (DOA) of the ith source as measured from broadside;
c is the velocity wave propagation and f is the center fre-
quency of the narrow-band source. Assume that the sig-
nals and the additive noises are stationary and ergodic zero



mean complex valued random processes. In addition, the
noises are assumed to be uncorrelated between sensors, and
to have identical variance s 2 in each sensor. It follows from
these assumptions that the spatial (N×N) cross-spectral ma-
trix of the observation vector at the frequency f is given
by: Γ( f ) = E [r( f )r+( f )] = H( f , Q )Γs( f )H+( f , Q )+Γn,
where E [.] denotes the expectation operator, the superscript
.+ represents conjugate transpose, Γs( f ) = E [s( f )s+( f )] is
the (P×P) sources cross-spectral matrix, and I is the identity
matrix. H( f , Q ) = [h( f , q 1),h( f , q 2), ...,h( f , q P)]T .

H( f , Q ) =
1√
N




1 1 · · · 1
e jf 1 e jf 2 · · · e jf P

...
... · · · ...

e(N−1) jf 1 e(N−1) jf 2 · · · e(N−1) jf P




The eigendecomposition of the cross-spectral matrix of the
data at frequency f is given by:

Γ( f ) =
N

å
i=1

l i( f )ui( f )u+
i ( f ) (3)

where l i( f ), i = 1, ...,N, (l 1 ≥ l 2 ≥ ...l P > l P+1 ' l P+2 '
...' l N = s 2), and ui( f ) are the ith eigenvalue and its corre-
sponding eigenvector. It is well known that the eigenvectors
corresponding to the minimum eigenvalues are orthogonal to
the columns of the matrix H( f , Q ).
Let Un( f ) = [uP+1( f ) uP+2( f ) ... uN( f )] is the (N×
N−P) matrix constructed with the (N−P) last eigenvectors,
which is called the noise subspace.
In order to avoid the eigendecomposition, an operator called
the ”Propagator”[4, 5] was proposed based on the partition
of the cross-spectral matrix. In the following, a new partition
of this operator is proposed in the case of a large number of
sensors compared to the number of existing sources. Indeed,
solely a small part of the cross-spectral matrix of data is used
without ignoring the advantages of using a very long antenna.

3. CLASSICAL SUBSPACE METHOD

In this section, a class of direction-of-arrival estima-
tors are briefly recalled, the so-called the subspace
method. Indeed, this approach is based on the eigen-
decomposition of the data cross-spectral matrix: Γ =

[Us Un ]
[
Λs

Λn

]
[Us Un ]+, where the different ma-

trices are defined as above. The subspace method yields an
estimate Ĥ of H by solving the equation [3]: U+

n Ĥ = 0, in a
least square sense (where Ĥ is subject to the same structure
as H), or h+Un = 0
The MUltiple Signal Classification [3] null-spectrum (MU-
SIC) is given by: S( f , q ) = {h+( f , q )UnU+

n h( f , q )}−1
.

It has been shown that S( f , q ) has maximum points at round
q in {q 1, q 2, ..., q P} (P is the number of sources). Therefore
we can estimate the P directions by taking the local maxi-
mum points of S( f , q ).

4. THE PROPAGATOR OPERATOR

4.1 Definition of the propagator

The rank of the channel matrix H plays an important role in
the construction of the noise subspace, consequently in the

localization of sources. The definition of the propagator is
based on the partitioning of the channel matrix H into two
submatrices, indicated as follows [5]:

H =

[
Ha
−−−
Hb

]
, (4)

where Ha is a square matrix of dimension (P×P) and Hb is
a matrix of dimension (N−P×P).
If we assume the propagation model is such as the rows (or
columns) of Ha are linearly independents, then Ha is non-
singular matrix. In general Ha can not be of rank P. Then, an
adequate permutation of rows (or columns) of H is necessary
in order to obtain Ha of rank P. The (N−P) rows of Hb are,
then, linearly dependents of the P first rows, we have: Hb =
Π+Ha. The operator Π is called propagator of dimension
(P×N−P).

4.2 The propagator operator in noiseless case

We consider the case of free-noise; the decomposition of the
data cross-spectral matrix is as follows:

Γ = HH+ =
[
Γ11 Γ12
Γ21 Γ22

]
, (5)

where Γ11, Γ12, Γ21 and Γ22 are the blocks matrices of di-
mension (P×P), (N−P×P), (P×N−P) and (N−P×N−
P), respectively. We have:

Γ =
[

Γ11 Γ11Π
Π+Γ11 Π+Γ11Π

]
, (6)

with, Γ11 = HaH+
a . To reduce the computational load, we

use the sub-matrices Γ11 and Γ12: Γ12 = Γ11Π.
The propagator operator is, then given by: Π = Γ−1

11 Γ12, or
Π+ = Γ+

12Γ
−1
11 .

The matrix Π is obtained by inverse of a matrix of dimension
(P×P). The estimation of the data blocks matrices from K
independents samples is given by:

Γ̂11 =
1
K

K

å
k=1

r1(k)r+
1 (k), Γ̂12 =

1
K

K

å
k=1

r1(k)r+
2 (k) (7)

where r1(k) = Has, and r2(k) = Hbs are two sub-vectors of
the data vector r(k).
In the presence of noise, the problem is more complicated,
the relationship (6) is not verified, therefore an other estima-
tor is necessary to decrease the noise influence.

4.3 The propagator in noisy case

We assume that the noise cross-spectral matrix is diagonal
with different values, the linear dependence between the P
first rows of the channel matrix H and the others rows, is al-
ways verified. We introduce a new partitioning of the channel
matrix to isolate the affected blocks matrices.

H =




Ha
−−−
Hb1
−−−
Hb2


 , (8)



where Hb1 and Hb2 are of dimensions (1×P) and (N−P−
1×P), respectively.
Assume (N ≥ P + 1), let the partitioning of the propagator
Π:

Π+ =

[
Π+

1−−−
Π+

2

]
, (9)

where, Π1 is a vector of dimension (P×1) and Π2 is a ma-
trix (P×N−P−1), let,

{
Hb1 = Π+

1 Ha

Hb2 = Π+
2 Ha

(10)

the following partitioning shows the affected blocks matrices
by the additive noise, Γ̃22 and Γ̃11,

Γ =
[
Γ̃11 Γ12

Γ21 Γ̃22

]
. (11)

The blocks matrices of Γ are given by:




Γ̃11 = Γ11 +ΓP
n ,

Γ12 = [Γ11Π1 | Γ11Π2] ,
Γ12 =

[
Γ1

12 | Γ2
12

]
,

Γ21 = Γ+
12

(12)

Γ̃22 =
[
Π+

1 Γ11Π1 + s 2
P+1 Π+

1 Γ11Π2

Π+
2 Γ11Π1 Π+

2 Γ11Π2 +ΓN−P−1
n

]
, (13)

where s 2
P+1 is the noise power of (P+1)th element, and Γ11

is the data cross-spectral matrix of the signal vector without
noise (Γ11 = Has). The matrices ΓP

n and ΓN−P−1
n , are the

noise diagonals matrices, of dimensions (P×P) and (N −
P−1×N−P−1), respectively.
Let the following partitioning of the matrix Γ̃22:

Γ̃22 =
[
Γ̃11

22 Γ12
22

Γ21
22 Γ̃22

22

]
. (14)

From the expressions (12), (12), (13) and (14), we have:

Γ12
22 = Π+

1 Γ2
12, or Π+

1 = Γ12
22Γ

2†
12 (15)

with, Γ2†

12 = Γ2+
12

(
Γ2

12Γ
2+
12

)−1
, and,

{
Γ21

22 = Π+
2 Γ1

12,

Π+
2 = Γ21

22Γ
1†
12.

(16)

The expressions (15) and (16), give the propagator operator.
This operator is estimated from the non-affected elements by
noise of the data cross-spectral matrix.

4.4 The Propagator for a large number of sensors

We introduce a new partitioning of the channel matrix to iso-
late the affected blocks matrices:

H =




H1
−−−
H2
−−−

...
−−−
Hn




(17)

H1, H2 and Hi are the same dimensions: (P×P).
As we assume that the matrix H is of full-rank. The P rows
of Hi are, then, linearly dependents of the P rows of H j, we
can write any submatrice Hi function of H j of H, with n is
an even number and i− j = n

2 . Then, we have:

H j = Π+
i, jHi (18)

with i− j = n/2 and n is assumed to be an even number.
This technique allows to use a small part of the cross-spectral
matrix to build the noise subspace.

From (18), Π+
i, jHi−H j = 0, then

[
Π+

i, j | −IP

][
Hi
−−
H j

]
= 0.

Let Q+ = [Π+ | −IP ], and H =

[
Hi
−−
H j

]
, then we have:

Q+H = 0 (19)

The expression (19) shows that the P columns of Q are lin-
early independents and orthogonals to the channel vectors H.
This means that the columns of Q span the noise subspace.
In the following, we estimate Q from the data cross-spectral
matrix.

4.5 Extraction of the propagator from data

After the presentation of different approaches of the propa-
gator, here, we present its corresponding noise subspace es-
timated from the data received on an antenna with a large
number of sensors.
This method is called DESO for Direct Extraction of the
noise Subspace from the Observations.
We assume that the antenna has a large number of sensors
compared to the number of sources (the application is in the
radiolocation domain with the presence of few mobile sta-
tions). We divide the data cross-spectral matrix Γ into n sub-
matrices. Where N = nP and N À P, with n is an even num-
ber n > 1. The propagator operator can be estimated from
the data cross-spectral matrix.
Rule: let the data cross-spectral matrix, Γ = HΓsH+ +
Γn. As we assume that the matrix H is of full-rank.
The P rows of Hi are, then, linearly dependents of the P
rows of H j. Let the following partitioning of Γ: Γ =
[A1 | ... |Ai | ... |A j | ... |An]. where Ai, A j, ..., An are
matrices of dimensions (N×P), respectively. We can write
any submatrice Ai function of A j of Γ, with j− i = n

2 and n
is an even number. Then, we have: A j = Π+

i, jAi.

Π+
i, jAi−A j = 0, then

[
Π+

i, j | −IP

][
Ai
−−
A j

]
= 0.

Let Q+ =
[
Π+

i, j | −IP
]
, and A =

[
Ai
−−
A j

]
then, we have:

Q+A = 0 (20)

The expression (20) shows that the P columns of Q are lin-
early independents and orthogonals to A.
To estimate the DESO operator, the optimization criterion is:

Π̂i, j = argmin
Πi,j

‖A j−AiΠ ‖F , (21)

where ‖ . ‖F is the Frobenius norm, we get: Πi, j = A†
i A j.



In the case of an additive white noise , i.e., Γn = s 2IN , it can
be shown that:

Q+ =
[
Π+

i, j | −IP

]
, (22)

verifies Q+H = Π+
i, jHi−H j = 0, (23)

The expression (23) shows that the P columns of Q are lin-
early independents and orthogonals to the source vectors H.
This means that the columns of Q span the noise subspace.
The DESO null-spectrum P( f , q ) is given by:

P( f , q ) =
{
h+( f , q )QQ+h( f , q )

}−1

In the performance simulations, we compare the two null-
spectrums of MUSIC and the Propagator, S( f , q ) and P( f , q )
respectively .

4.6 DESO’s noise projector vs. noise eigenvectors

Let the eigendecomposition of the data cross-spectral matrix:
Γ = UΛU+ = UsΛsU+

s +UnΛnU+
n , where U = [Us |

Un], Λ = diag(Λs,Λn); Λs = diag(l 1, ..., l P) contains the
P largest eigenvalues of Γ in descending order and Us =
[u1, ...,uP] contains the corresponding orthonormal eigen-
vectors; Λn = s 2IN−P and Un = [uP+1, ...,uN ] contain the
(N − P) orthonormal eigenvectors that correspond to the
eigenvalue s 2, i.e., the noise eigenvectors.
In the following, we establish the relationship between Q and

Un. Define the partition of Un: Un =

[
Una
−−−
Unb

]
, where Una

and Unb are two matrices of dimensions (M + N ×N −P)
and (N−P×N−P), respectively. Since,

H+Un = H+
a Una +H+

b Unb = 0, (24)

we have, Π =−UnaU−1
nb , Q =−UnU−1

na .
The orthonormal matrix Qo (normalized version of Q) is
equal to −Un. This expression shows that the columns of
Qo are equal to the smallest eigenvectors of the observation
cross-spectral matrix.

5. PERFORMANCE SIMULATIONS

To demonstrate the efficiency of DESO method, some com-
puter simulations have been conducted. For all these simula-
tions, the number K of data samples used to estimate each
q is equal to 1000 samples. The normalized root mean-
square error (NRMSE) defined in the following is employed
as a performance criterion of the input estimates: NRMSE =

1
‖ q ‖

(
1
K

K

å
k=1

‖ q k− q ‖2

) 1
2

, q k is the estimate of the inputs

from the kth trial.
In this simulation, 2 sources are received by an antenna of 20
sensors. In this case, the computational load is reduced 10
times by using the DESO algorithm.
Based on the NRMSE, we compare the classical subspace
method [5] and DESO algorithm . The figure 1 demonstrates
that the subspace identification method based on the eigende-
composition of the data cross-spectral matrix shows signifi-
cantly less normalized mean square estimation error than the
DESO method. The NRMSE tends to zero when the SNR

−5 0 5 10 15
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−1

10
0

MUSIC
DESO

SNR(dB)

N
R

M
S

E
(d

eg
)

Figure 1: NRMSE of the parameters estimates versus SNR
(K = 1000).

value increases for both methods and when the SNR value
is greater that 10dB, the two methods give the same perfor-
mances.

6. CONCLUSION

This paper presents a fast method for direction of arrival esti-
mation for radiolocation. The DESO method is computation-
ally more efficient, because it doesn’t need any eigendecom-
position of the data spectral matrix to estimate the noise sub-
space. For high value of the SNR, DESO method has, almost,
the same performances as the classical subspace method.
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