
NOISE POWER SPECTRAL DENSITY ESTIMATION FROM NOISY SPEECH USING
ON-LINE TRAINED HIDDEN MARKOV MODELS

Karsten Vandborg Sørensen and Søren Vang Andersen

Department of Communication Technology, Aalborg University
Fredrik Bajers Vej 7, 9220 Aalborg Ø, Denmark

{kvs,sva}@kom.aau.dk

ABSTRACT

In this paper we describe a method for estimation of noise power
spectral densities from a noisy speech signal. The method is used
in conjunction with a time-frequency domain speech presence de-
tection method that provides connected time-frequency regions of
each decision type. In speech absence regions hidden Markov mod-
els are trained on-line and in speech presence regions the trained
models are used for MMSE optimum estimation. Both types of
speech presence regions can be present in each frame and on-line
training of the models in speech absence can be conducted while
the models in speech presence are used for estimation. Experiments
show that the proposed noise PSD estimation method consistently
performs better than three state-of-the-art reference methods. For
real-life noise types the special case of the hidden Markov model
where it reduces to a Gaussian mixture model is shown to be nearly
as good as the hidden Markov model.

1. INTRODUCTION

Statistical noise estimation methods very often relies on an assump-
tion of stationarity; the parameters of the noise PDF are estimated
during speech absence and kept constant during speech presence. In
this paper we investigate if dynamic modeling of the noise PDF us-
ing hidden Markov models (HMM’s) results in better performance
than when using static Gaussian mixture models (GMM’s). We
evaluate the performance for real-life noise types. Transition prob-
abilities in the HMM’s will, to a certain degree, capture the dy-
namic behavior of non-stationary noise. The general method of
HMM’s have already proven its worth for modeling different classes
of noise. In particular, Sameti et. al. [1] and Gaunard et. al. [2] have
used off-line trained noise models for noise classification. In their
approach only a predefined set of noise classes are modeled and the
off-line training is supervised. Similarly trained models have been
suggested by Ghoreishi and Sheikhzadeh [3] for speech pause de-
tection. A subband approach has been proposed by Hosoki et. al.
[4] for noise detection. If a subband is unlikely to contain clean
speech they classify it as being noise contaminated.

In previous work [5] we have proposed a connected time-fre-
quency domain region speech presence detector and applied it to
find bias compensation factors for minimum statistics based noise
estimation. We have shown that this approach results in a less spec-
trally distorted noise estimate than the original minimum statistics
based noise estimation [6]. In this paper, we apply our new ap-
proach to train subband HMM’s on-line while speech is absent.
When speech is present we use the most recently trained noise mod-
els for MMSE optimum noise power spectral density (PSD) estima-
tion. This way, instead of choosing from a finite set of predefined
noise class models, the proposed method models the local behavior
of the noise to more accurately adapt to the actual noise environ-
ment.

The remainder of this paper is organized as follows. Section
2 describes the signal model, the speech presence hypotheses, the
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spectral smoothing method, and the fundamental noise PSD estima-
tion approach. Section 3 provides the details of the applied statisti-
cal model. In Section 4 the methods for estimation of state proba-
bilities and unknown observations are described. Section 5 contains
the experiments and Section 6 provides a discussion of the proposed
method and the obtained results.

2. SIGNAL MODEL

We assume that noisy speech y(i) at sampling time index i consists
of speech s(i) and additive noise n(i). For joint time-frequency
analysis of y(i) we apply the L-point discrete Short-Time Fourier
Transform (STFT), i.e.

Y (τ,ω) =
L−1

å
µ=0

y(τR+µ)h(µ)exp(−j2πωµ/L) , (1)

where τ ∈ Z is the (sub-sampled) time index, ω ∈ {0,1, . . . ,L−1}
is the frequency index, and L is the STFT size, which in this paper
equals the window length. R is the skip between frames and h(µ)

is a unit energy window function, i.e. å L−1
µ=0

h2(µ) = 1. From the
linearity of (1) we have that Y (τ,ω) = S(τ,ω)+N(τ,ω), where
S(τ,ω) and N(τ,ω) are the STFT coefficients of speech s(i) and
additive noise n(i), respectively. We further assume that s(i) and
n(i) are zero mean and statistically independent, which leads to a
power relation where the noise is additive. Now, let the hypotheses
H0 and H1 for speech absence and speech presence, respectively,
be defined by two power relations, i.e.

H0 : E{|Y (τ,ω)|2} = E{|N(τ,ω)|2} (2)

H1 : E{|Y (τ,ω)|2} = E{|S(τ,ω)|2}+E{|N(τ,ω)|2}. (3)

The decision of which hypothesis to believe is true is done by means
of the connected region speech presence detection method, which
we have proposed in previous work [5]. This speech presence detec-
tion method provides individual decisions at each time-frequency
location. At the same time it ensures that decisions of the same
type are connected in larger time-frequency regions. In the regions
where no speech is detected we can directly observe what we as-
sume to be the realizations of the stochastic noise process. The ap-
proach taken in this paper is to exploit this property to train dynamic
statistical noise models in connected regions of speech absence and
use it for noise PSD estimation in regions of speech presence. Ini-
tially, we apply a spectral window of size 2D +1, centered at ω, to
reduce the fluctuations of the noisy speech periodogram bins, i.e.

B(τ,ω) =
1

2D +1

ω+D

å
ω̃=ω−D

|Y (τ, ω̃)|2. (4)

At each time-frequency location (τ,ω) we let the spectrally aver-
aged B(τ,ω) constitute the noise PSD estimate if speech is absent
in all the noisy speech periodogram bins within the spectral win-
dow in (4). If speech is present in any of these bins we turn to
HMM based MMSE estimation.



3. TRAINING THE STATISTICAL MODEL

We model the spectrally averaged noisy periodogram bins B(τ,ω)
at each ω using a continuous density HMM with a Gaussian mix-
ture model in each state of the HMM modeling the observation PDF.
At current time, say T , we consider the T ′ most recent spectrally
smoothed periodograms, i.e. B(τ,ω) for T −T ′ < τ ≤ T . If no
noisy speech periodogram bins with speech presence was used in
(4) to calculate any of these, we denote the case D(T ,ω) = 0 and
otherwise we denote it D(T ,ω) = 1. Binary speech presence de-
tection methods generally needs a certain amount of speech power
to detect speech presence. Therefore, the last few noisy speech pe-
riodogram bins leading up to a speech presence region will most
likely contain enough speech power to contaminate the HMM train-
ing. To avoid this, we train the HMM on the training set that consist
of the first T spectrally smoothed periodograms within the sliding
window of length T ′. We train the model on the training set only if
D(T ,ω) = 0. If D(T ,ω) = 1, the model parameters from T −1
are preserved except for the forward likelihoods, which are esti-
mated by prediction from the forward likelihoods and state transi-
tion probabilities of the model at T − 1. The set of T spectrally
smoothed bins B(τ,ω) for T −T ′ < τ ≤ T −T ′ + T that con-
stitutes a training set of T scalar observations at ω will cause the
means and variances of the GMM’s to be scalars. For easy gener-
alization to the vector case we will, however, describe the theory
using vector/matrix notation. As the training procedure is the same
for all sets of training vectors we use the same notation for all T

and ω, i.e. X
T
1 , [x1,x2, . . . ,xT−1,xT ]. We want to find model

parameters Φ that maximize the joint likelihood1 conditioned on
the training set XT

1 of T observation vectors by adjusting the model
parameters, i.e.

Φ̂ML = argmax
Φ

p(XT
1 |Φ). (5)

This optimization, however, of the (generally) non-convex objec-
tive function p(XT

1
|Φ) requires knowledge of the hidden states and

mixture components and is therefore not feasible. Instead we use
the Baum-Welch algorithm [7], which by alternating maximization
will converge to a model parameter estimate corresponding to a lo-
cal maximum of the likelihood function. To ensure numerical stabil-
ity we use the lower limit ǫ1 = 10−6 on the multivariate Gaussian
mixture components cjk , the single element of the 1-by-1 covari-
ance matrices Σjk , and the sampled individual Gaussians bjk(xt)
for all mixture numbers 1 ≤ k ≤ K and states 1 ≤ j ≤ N . Also,
we use a lower limit ǫ2 = 10−2 on all entries in the state transi-
tion probability matrix A = {aij} = P (st = j|st−1 = i) [8, pp.
381-382] for the states 1 ≤ i,j ≤ N .

Let αt(i) denote the forward likelihoods, defined as the likeli-
hoods for being in state i at t while having produced the observa-
tions X

t
1, conditioned on the model, i.e.

αt(i) , p(Xt
1,st = i|Φ). (6)

The forward likelihoods α0(i) initializing the HMM training for
t = 0 at each T are initialized as uniform distributions. After ini-
tialization at t = 0 the forward likelihoods for 1 ≤ t ≤ T in the
Baum-Welch training algorithm are induced from the forward like-
lihoods at t−1, i.e.

αt(j) =
N

å
i=1

αt−1(i)aijbj(xt), (7)

where the sampled observation PDF bj(xt) from state j is given by
the weighted mixture of sampled Gaussians bjk(xt), i.e.

bj(xt) =
M

å
k=1

cjkbjk(xt) =
M

å
k=1

cjkN (xt;µjk ,Σjk). (8)

1We use p(·) to denote probability density functions and P (·) to denote
probability mass functions.

To avoid numerical instability in the implementation all forward
likelihood vectors are scaled to unity l1-norm [8], i.e.

α̃t = αt/‖αt‖1. (9)

This scaling does not affect training nor does it affect HMM based
estimation.

4. HIDDEN MARKOV MODEL BASED ESTIMATION

When speech presence is detected in a noisy speech periodogram
bin it will cause D(τ,ω) = 1 for T ′ successive values of τ at all
2D +1 frequency indices ω where it is located within the spectral
window in (4). While D(τ,ω) = 1 the forward likelihoods αT ′

at ω, which are required for HMM based estimation, are predicted
from the most recently trained model at ω, i.e. the model at the
most recent τ for which D(τ,ω) = 0. We denote the last observ-
able training set, on which this model has been trained, X̃T

1 . When
D(T ,ω) = 1 we set the sampled observation PDF equal to one for
all states j, i.e. bj(xt) = 1. This corresponds to an observation xt

that does not affect the forward likelihoods and therefore it leads
to a simplified version of the forward likelihood induction equation
in (6), i.e. αt(j) = å N

i=1 αt−1(i)aij for j ∈ {1, . . . ,N}. The sim-
plified equation can be compactly written in vector/matrix notation,
i.e.

αt = A
T

αt−1. (10)

From (10) it follows that the F ’th successively estimated forward
likelihood vector for T ′ (at current time T ) is given by

αT ′ = (AT )F αT ′−F . (11)

In the above αT ′−F is relative to current time T , i.e. it equals
αT from time T − F + (T ′ − T ). We now investigate whether
or not this estimate will convergence to a “steady state”. Sup-
pose A

T ∈ R
N×N has N linearly independent eigenvectors. Then,

by means of the eigenvalue decomposition we have that A
T =

SΛS
−1, where Λ is a diagonal matrix with non-increasingly sorted

eigenvalues λ1 ≥ λ2 ≥ ·· · ≥ λN−1 ≥ λN on the diagonal and
S = [s1, . . . ,sN ] is a matrix of associated eigenvectors. We then
have that (AT )F =SΛ

F
S
−1. For the strictly positive, hence prim-

itive, Markov matrix A
T the Perron-Frobenius theorem for primi-

tive matrices [9, Theorem 1.1] states that there will be a unique
dominant eigenvalue λ1 > |λi| for any eigenvalue λi 6= λ1, which
can be associated a strictly positive (or strictly negative) dominant
eigenvector s1. For a positive Markov matrix the dominant eigen-
value will be λ1 = 1 [9, p.118]. Now, if we let F → ¥ we have that
the dominant eigenvalue remains one while the rest goes to zero.
Therefore, limF→¥ SΛ

F
S
−1 becomes a rank-1 projection matrix

that projects onto the subspace C (s1) ∈ R
N , i.e. the line, spanned

by a dominant eigenvector s1 of A
T . Since we have that αT ′−F is

strictly positive it is not possible that s1⊥αT ′−F . In effect,

lim
P→¥

SΛ
F
S
−1

αT ′−F = cs1, (12)

where c ∈ R \ 0 is a constant. In the practical implementation, we
have that αT ′−F is scaled by (9) to unity l1-norm. Since left mul-
tiplication with the Markov matrix A

T does not affect the l1-norm
the limit value remains cs1, but readily scaled to unity l1-norm.
Thus, c = sign(s1(i))/||s1||1 for any i ∈ {1, . . . ,N}. To summa-
rize, forward likelihood vectors predicted successively by (10) con-
verge to a dominant eigenvector of AT . In fact, this implies that the
HMM converges to a special case where it reduces to a GMM.

Once the forward likelihoods have been estimated we obtain the
noise PSD estimate x̂T as the conditional MMSE optimum obser-
vation vector x̂

⋆
T . i.e.

x̂
⋆
T = argmin

x̂T

E{(x̂T −xT )T (x̂T −xT )|X̃T
1 ,Φ}. (13)



We assume that the unknown observation vector xT is drawn from
a continuous density HMM with observation PDF’s modeled by a
GMM in each state, i.e.

xT ∼
N

å
j=1

K

å
k=1

P (sT = j|X̃T
1 ,Φ)cjkN (xT ;µjk ,Σjk). (14)

The conditional MMSE estimate of the observation parameter vec-
tor is therefore given by

x̂
⋆
T =

N

å
j=1

K

å
k=1

P (sT = j|X̃T
1 ,Φ)cjkµjk , (15)

where the j’th conditional state probability

P (sT = j|X̃T
1 ,Φ) = p(sT = j,X̃T

1 |Φ)/p(X̃T
1 |Φ) (16)

is obtained as the j’th entry in α̃T , given by (9).

5. EXPERIMENTS

For the experiments we use signals sampled at 8 kHz sampling fre-
quency. Both frame and FFT size are L = 256 and the frame skip
is R = 128 samples. The analysis window is a square-root Han-
ning scaled to unit energy. D = 2 defines the size of the spectral
window and the number of observations in a training set is T = 16.
These are taken from a sliding window of length T ′ = 20. In the
experiments we evaluate the performance in subbands consisting of
individual frequency tracks, i.e. scalar observations for all HMM’s.
The following methods are compared:
• HMM(5,1): The proposed HMM based noise estimation method

with M = 1 Gaussian in each state and N = 5 states.
• GMM(5): The proposed method with M = 5 and N = 1. With

N = 1 the HMM reduces to a GMM with M Gaussians.
• CR-SPD: Connected time-frequency region speech presence de-

tection based smooth noise estimation [5].
• MCRA2: Minima controlled recursive averaging [10].
• MS: Minimum statistics noise estimation [6].

The first three methods are based on the connected time-frequency
region speech presence detector proposed in [5]. The last two meth-
ods, MCRA and MS, serve as well known reference methods, which
both feature independence from explicit speech presence detection.
The performance of these methods are evaluated by means of their
spectral distortion, which we measure as average segmental noise-
to-error ratios (SegNER’s). We calculate the SegNER directly in the
time-frequency domain, as the ratio in dB between the noise energy
and the noise estimation error energy. These values are upper and
lower limited by 35 and 0 dB [11, p.586], respectively, and averaged
over all T ′ frames, i.e.

SegNER =
1

T ′

T ′

å
τ=1

min(max(NER(τ ),0),35), (17)

where the noise-to-error ratio, in dB, at τ is given by

NER(τ ) = 10log10

(
å L−1

ω=0
|N(τ,ω)|2

å L−1
ω=0

(|N(τ,ω)|− |N̂(τ,ω)|)2

)
. (18)

We evaluate for noisy speech with 4 different noise types, i.e. high-
way traffic, car interior, white, and helicopter noise, which (with
zero mean) are added to the speech in -5, 0, 5, and 10 dB SNR. In
each combination of SNR and noise type we average the SegNER’s
over speech from 3 male and 3 female speakers from the TIMIT

2MCRA is implemented for 8 kHz sampling frequency and 16 ms frame
skip. Filter coefficients have time constants equal to the coefficients pro-
posed by Cohen and Berdugo [10].
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Figure 1: Convergence of the HMM(5,1) MMSE noise estimate to-
wards the “steady state” estimate. Estimated values begin at τ = 17.

database [12]. Initially, we illustrate the distinct dynamic modeling
abilities and the “steady state” estimate convergence of HMM(5,1)
with an example where the model is trained on the first 16 observa-
tions. For illustrative purposes, as well as for implementation veri-
fication, we have in this example used artificially created noise with
dynamics that are well captured by the applied model. The example
is shown in Fig. 1. We conclude that the initialization and subse-
quent Baum-Welch training lead to model parameters where the dy-
namics of the noise have been well captured by the model. The av-
erage SegNER’s for the five noise estimation methods when applied
on the noisy test set are listed in Table 1. The best average SegNER
in each combination of noise type and input SNR is emphasized
using bold letters. For -5 dB highway traffic noise HMM(5,1) and
GMM(5) are equally good, so we emphasize the average SegNER
of the method that was best before the SegNER’s were rounded.
From the table we see that HMM(5,1) has the highest average Seg-
NER’s for highway traffic, car interior, and helicopter noise and
GMM(5) has the highest average SegNER’s for white noise. That
GMM(5) is better than HMM(5,1) in white noise is to be expected
since the additional degrees of freedom in the HMM(5,1) relative
to the GMM(5) tend to cause over-modeling. This is particularly
the case when the training sets are small. In case of the HMM(5,1)
the local variations in the realizations of stationary stochastic noise
processes are, generally, captured by a dynamic model and in case
of the GMM(5) by a static model. In all the tested combinations of
noise type and SNR the proposed method is considerably better than
both MCRA [10] and MS [6]. This is the case in regions of speech
presence as well as in regions of speech absence. We note that in all
cases the SegNER’s for HMM(5,1) and GMM(5) have only minor
differences. In Figure 2 we show the original noisy speech and the
HMM(5,1) noise PSD estimates for one of the noisy speech signals
from the test set.

6. DISCUSSION

We have proposed a HMM based method for noise PSD estima-
tion that depends on an external connected time-frequency region
speech presence detector. The method is trained on-line in speech
absence and applied on-line for noise PSD estimation in connected
regions of speech presence. Estimates from the proposed method
are consistently less spectrally distorted than estimates from any of
the three reference methods.

We have shown that for the tested real-life noise types there
are only minor differences in performance between GMM(5) and
HMM(5,1), i.e. the static model leads to similar performance as
the dynamic model. For noise environments with clearly dynami-
cally changing noise PSD PDF’s the HMM would be advantageous,
though, as it, like we show in Fig. 1, does have the ability to model
dynamic behavior of the PDF, that is, non-stationary noise. How-
ever, in order for the HMM to be a significantly better model than
the GMM the number of states and Gaussians in each GMM must
be adequately chosen. Also, the size of the training sets needs to
be large enough for the dynamics to be captured during the Baum-
Welch training.

At the cost of increased computational complexity and mem-
ory requirements the number of states and Gaussians in the HMM



Noise Type Highway Traffic Car Interior White Helicopter
Input SNR [dB] -5 0 5 10 -5 0 5 10 -5 0 5 10 -5 0 5 10

HMM(5,1) 6.08 5.77 5.31 4.77 5.79 5.72 5.69 5.66 7.20 7.08 6.91 6.75 6.26 5.79 5.29 4.99
GMM(5) 6.08 5.75 5.25 4.69 5.74 5.68 5.62 5.60 7.24 7.12 6.96 6.80 6.23 5.76 5.28 4.94
CR-SPD 4.85 4.71 4.69 4.42 3.49 3.50 3.50 3.41 5.95 5.94 5.91 5.87 4.94 4.87 4.84 4.76
MCRA2 0.00 0.05 0.51 2.73 0.03 0.09 0.53 2.67 0.45 5.22 4.92 3.28 0.02 0.09 0.93 2.79
MS 0.37 1.00 1.82 2.44 1.49 1.89 2.14 2.64 0.12 1.93 2.95 2.43 0.21 0.50 0.99 1.87

Table 1: Average segmental noise-to-error ratios in dB when compared to noise realization.
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Figure 2: Spectrograms of noisy speech (top) and the HMM(5,1)
noise PSD estimates (bottom) for 5 dB SNR highway traffic noise.
The female speaker is uttering: “Good service should be rewarded
by big tips.” “Steady state” estimates appear to be dominating.

could be estimated on-line during speech pauses. At each ω various
models could be trained and the best choice could be made from
measuring the distortion between estimated and observed noise.

We have shown that the MMSE estimate under certain condi-
tions converges to a “steady state” estimate determined by a domi-
nant eigenvector of the transposed transition matrix. In case that the
columns of the transposed state transition probability matrix A

T

after Baum-Welch training remains uniformly distributed the trace,
which equals the sum of the eigenvalues, will be 1. Therefore the
dominant eigenvalue of the symmetric and positive semi-definite
matrix, implying non-negative eigenvalues [13, p.269], will be the
only eigenvalue different from zero. This will cause immediate con-
vergence to the “steady state” estimate where the HMM reduces to
a GMM. For stationary noise we consider this to be desired behav-
ior. More generally, the gap in magnitude between the dominant
eigenvalue and the remaining eigenvalues affects the rate of con-
vergence. There will also be an impact from the angle between
the forward likelihood vector and the individual subspaces spanned
by associated eigenvectors. Experiments have shown that the rate
of convergence for a number of models trained on the same train-
ing set with different initializations differs for parameters associated
with each of the local minima of the likelihood function. There is
no direct relationship, however, between the likelihood of a local
minimum and the rate of convergence.

For environments with increasing or decreasing noise levels
delta parameters will be better suited for the proposed noise estima-
tion method. They will give the “steady state” estimate the ability
to follow the level of the noise. Using non-delta representation is
the most conservative approach and will unlike the delta represen-
tation ensure a stable MMSE estimate. It will, however, not be able
to follow increasing nor decreasing noise during speech presence.

If the statistical models are trained with no spectral smoothing
of the training sets, i.e. with D = 0, the method proposed in this pa-
per could easily be modified to provide estimated noise PSD PDF’s

at each frequency. This makes the proposed method applicable, and
very well suited, for statistical speech enhancement.

The method described in this paper can be applied on subbands
of any width. For the model to benefit from any inter-frequency
dependencies the vectors in each subband should be modeled using
full (non-diagonal) covariance matrices. Better performance could
very well be a consequence of the ability to model inter-frequency
dependencies in the noise. HMM modeling employing parametric
descriptions of larger time-frequency regions is a topic of current
research.
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