
DIAGNOSTIC ANALYSIS USING TEXTURAL FEATURES 
OF THE LACHRYMAL FLUID CRYSTAL IMAGES 

Alexander Kupriyanov, Nataly Ilyasova, and Alexander Malapheyev 
Image Processing Systems Institute of Russian Academy of Sciences 

Molodogvardeyskaya st. 151, 443001, Samara, Russia 
phone: + (7) 8462 325622, fax: + (7) 8462 325620, email: akupr@smr.ru 

ABSTRACT 
The application of the direction field method and the statis-
tical textural analysis for crystallograms classification is 
proposed. As global features, the features the expert uses for 
the crystallogram-based classification of the eye pathology 
were taken: unidirectedness of the crystal rays, relative area 
of crystal domains with clear-cut rays, ray density, crystal 
transparency. As textural features, the characteristics of the 
second-order distribution were taken. Experimental studies 
were conducted on the lachrymal fluid crystallograms. 

1. INTRODUCTION 

Pathological conditions cause multiple changes in the mo-
lecular composition of tissue and biological fluid. Many au-
thors believe that biological fluids [1] (blood, saliva, urine, 
and others) are indicative of metabolism impairment caused 
by the pathology in a human organ.  
Crystallographic studies (CS) are used as an integrated 
method that allows one to make implicit conclusions about 
the matter structure. The CS of biological fluids can provide 
information that would allow a more accurate diagnostic of 
inflammatory, cancer, dystrophic, and allergic diseases. In 
clinical practice, crystallogram photographs are analyzed. It 
is very difficult if not impossible, to visually single out the 
critical pathological signs.  
In this connection, computerized methods for crystallogram 
image processing are becoming important tools of scientific 
research and enhancement of early diagnostics. Our studies 
aim to develop methods for the automated analysis of crystal-
lograms, investigate their diagnostic value, and generate 
quantitative integrated estimates of pathology probability on 
the basis of the crystallogram classification features. 

According to the crystallographic analysis method used in 
the clinical setting, the normal fluid crystallogram is trans-
parent and comprises thin, mostly unidirectional, clear-cut 
rays originating from a common crystallization center. Patho-
logical crystals feature a great variety of directions and ir-
regular contours. The pathological crystal is opaque, with 
numerous ray fractures and bulges. A distinctive feature of 
pathology is the large density of crystal rays in some areas 
(fig. 1). Thus, by analyzing the crystallograms the ophthal-
mologist had classified as those with and without pathology, 
we were able to extract the global features the expert uses for 
the crystallogram-based classification of the eye pathology: 
unidirectedness of the crystal rays; relative area of domains 
with clear-cut rays of the crystal; ray density; and crystal 
transparency [2]. 

2. FORMATION OF CRYSTALLOGRAM GLOBAL 
DIAGNOSTIC FEATURES 

The quasiperiodic structure is an important feature of the 
crystallogram images[3]. Because of this, most classification 
features we discuss are based on the notion of the complex 
direction field [4] derived from the function of image inten-
sity ( ),I x y : 
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Figure 1. Crystallogram samples in normal condition (a-b) and pathological condition (c-g) 



 
The direction field ( )ψ ,x y represents the tangent angle to the 
level lines of the intensity function; the weight function 

( ),w x y  stands for the certainty (reliability) in the determina-
tion of the direction field at a given point. 
The coefficient of the crystals unidirectedness is defined as: 
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Table 1. Characteristic crystallogram images and the direction 
fields in normal condition (left column) and pathological condition 
(right column) 

Original image 

  
Filtered direction field 

  
Weight function 

  
Contour characteristic 

  

 
The contour characteristic of the direction field of the first 
pathological crystallogram is depicted in table 1.  
To quantify the domains with the pronounced unidirected-
ness of lines, we use the coefficient of clear-cut lines 2K  
defined as the ratio of the total area pS  of domains with the 
greatest the weight values of the direction field to the entire 
image area S : =2 /pK S S  
Quantitatively, the line density feature in the crystallogram is 
found to be based on the frequency properties of the image 
intensity function. As a classification criterion, we take here 

the mean value of the ray density over the image domain D  
wherein the weight function takes its greatest value and the 
value of spectral frequency is certain.  
The image intensity function is considered to be locally peri-
odic and admitting the following approximation:  

ω ω ϕ= + + +( , ) sin( )x yI x y A x y B ,  

where ωx  and ωy  are the spatial projections. The coeffi-
cient of the line density 3K  is defined as the mean value of 
the squared spatial frequency of the crystallogram intensity 
function:  
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The crystallogram transparency is characterized through the 
probability distribution of the intensity function. The “trans-
parent” crystallogram features a positive shift of the mean 
value of intensity I  with respect to the midpoint 

= +max min( )/2cI I I  of the intensity range. This criterion 
can be quantified by the coefficient: = −4 ( )/cK I I I . 
The probability of crystallogram’s being pathology-free was 
used as a criterion for the independent classification by each 
feature. In particular, the probability is equal to one if the 
value of the criterion is greater than the threshold of norm, 
and it is equal to zero if the criterion is smaller than the 
threshold of pathology. In the intermediate range the depend-
ence is linear. For each feature, the threshold of norm and 
pathology is chosen from the condition of the minimum clas-
sification error under the given criterion. The final estimate 
of the pathology probability depends on the partial estimates 
of the pathology probabilities derived from each criterion. 
Experimental studies [2] have shown that the above-
considered features have different weights upon the crystal-
logram diagnostics. Thus the weight coefficients for each 
criterion were taken to be proportional to the quality of the 
classification.  
The classification results are shown in Table 2. In the table, 
the column Type indicates the a priori estimate of an image 
by the ophthalmologist (N - norm, P - pathology); P1 through 
P4 are the probabilities of norm according to the correspond-
ing classification criteria; R1, R2 are the resulting estimates 
of the probability of norm obtained via different techniques 
for combining the classification criteria (R2 is for the optimal 
combination); C1 and C2 show whether the classification 
result corresponds to the a priori estimate, provided that 
threshold is 0.6. 
The global diagnostics on a series of samples (150 crystal-
lograms) has made it possible to extract from a variety of 
crystallograms the normal and pathological groups and 
quantify the classification features. The error in the pathol-
ogy recognition in the crystallograms with quasiperiodic 
structures did not exceed 3-5%. A more detailed processing 
based on a series of local features will make it possible in 
the future to go to the differential diagnostics, thus diagnos-
ing separate groups of diseases: tumors, dystrophic and in-
flammatory diseases. The objective of the next section is 
studies and formalization of these diagnostics features. 



Table 2. The results of classification on the learning sample. 

Image Direction field Type P1 P2 P3 P4 R1 С1 R2 С2 

 

 

 

N 0.634 0.4 0.964 1 0.72 + 0.736 + 

  

N 1 1 0.44 0.294 0.72 + 0.783 + 

  

P 0 0 1 0 0.15 + 0.319 + 

  

N 0.863 1 0.476 0.824 0.83 + 0.751 + 

  

P 0.614 0.525 0.456 1 0.67 - 0.576 + 

 

3. FORMATION OF CRYSTALLOGRAM LOCAL 
TEXTURAL DIAGNOSTIC FEATURES 

The image texture is analyzed to provide a series of features 
for the classification of the eye fluid crystallograms accord-
ing to the familiar types of pathologies. The textural features 
were formed on the basis of human visual perception, so the 
aim was to extract the information that a human interpreter 
associates with the texture. 
The different images represent a particular texture for each 
class of the crystallograms, which is a global representation 
of the crystal. A clinical expert extracted seven main classes 
according to the severity of pathology. The first two classes 
form a norm group (fig. 1a-1b). The last five classes form a 
pathology group (fig. 1c-1g). The crystallograms available 
for this study came from 70 patients with different types of 
pathologies. The texture analysis was carried out on the im-
ages of lachrymal crystallograms using the second-order sta-
tistics of the gray levels. The gray-level-cooccurrence fea-
tures [5] have proven to be very successful in the extraction 
of textural information [6]. 
To describe the gray-level cooccurrence (GLC) matrix, we 
need the following definitions and symbols: D  is the im-
age field containing ×M N  pixels, ,m nx is the gray value of 
pixel coordinates ∈( , )m n D , G  is the number of the gray 
levels in the image. 

 

The indicator-function (3) shows whether two neighboring 
pixels at the distance d  have the determined levels: 
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The normalized values of the GLC matrix are defined as 
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The dimension of matrix ,k lP  is ×G G . The distinction be-
tween the opposite directions was disregarded. Therefore, the 
symmetrical matrices ,

s
k lP were generated as follows: 

( )− −= +, , , 2s
k l k l k lP P P . For the present purposes, we chose 

to avoid the characterization of texture in a given direction. 
Each calculated matrix s

dP  is the average of four matrices 
calculated in the four directions (0°, 45°, 90° and 
135°): −= + + +,0 , 0, ,( )/ 4s s s s s

d d d d d d dP P P P P . 



A set of statistic features ( )= 1 6,...,d dF f f was calculated to 

summarize the GLC matrix. These features are textural fea-
tures[7] (Table 3). Variance describes the degree of image 
homogeneity. Contrast describes the degree of image con-
trast. Inertia  describes the presence of sharp edges. Correla-
tion describes the degree of statistical dependence of pixels. 
Shade describes the degree of equiprobable appearance of 
dark and bright areas in the image (near-object shadows, 
etc.). Entropy is the measure of image disorder.  
The K-nearest neighbours (KNN) method was applied to a 
series of images. The classifier was developed using ran-
domly selected 50% of the data set, with the testing per-
formed with the remaining 50% of data. With the KNN 
method, each pattern of the training set is stored as a proto-
type. The class of a new pattern is directly obtained from the 
computation of the distance between this pattern and each 
prototype in database. Among the KNN, the majority class is 
ascribed to the unknown pattern.  
 
Table 3. The average nonnormalised values of each feature 
 for major groups - norm and pathology 

Feature Norm 
Pa-
thol-
ogy 

Variance   
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As the number of samples in each class was relatively small, 
the classification was conducted ten times with various ran-
domly selected testing and training sets. The classification 
rates presented in Table 4 correspond to the average results 
obtained in the experiments [7]. 
These results indicate that the method of textural analysis can 
be used to identify the class of the crystallogram, and, hence, 
determine the severity and type of pathology, with a rela-
tively small probability of false miss errors. 
 

Table 4. The classification results of the 1144 crystallograms 
samples 

Group Norm Pathology 

Correctly classified 334 810 

Percentage of correct  
classification 87% 98% 

4. CONCLUSION 

Methods of the direction field and statistical textural analysis 
have been used to construct a classifier that allows the lach-
rymal fluid crystallogram type to be identified. A conceptual 
possibility to use the technique for disease diagnostics has 
been proved. Some experiments yielded an accuracy of near 
95%. 
It is possible to construct an expert system to diagnose the 
pathology type of biological liquid crystallograms. Addition-
ally, the effectiveness and informativeness of the features 
were studied using the discriminant analysis method [7]. 
Since certain features are highly correlated with others the 
classification quality can be further improved. In future re-
search, we propose to use a combination of textural and di-
rection field analysis. 
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