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ABSTRACT

In this paper, we propose an optimal fault-tolerant algo-
rithm for distributed event detection in wireless sensor net-
works. Two important problems are addressed: 1. How to
handle both the noise-related measurement error and sensor
fault simultaneously in fault-tolerant detection? 2. How to
choose a proper neighborhood size n for a sensor node in
fault correction such that the maximum energy could be con-
served? Both theoretical analysis and experimental results
confirm the effectiveness and efficiency of the proposed al-
gorithm.

1. INTRODUCTION

Recent advancement in wireless communications and elec-
tronics has enabled the development of low-cost wireless
sensor networks. One of the important sensor network appli-
cations is for event detection in inaccessible environments.
For example, sensor networks can be used to detect foreign
chemical agents in the air and the water and the event could
be unusual high chemical concentration that generates a lot
of safety and health concerns for the public.

In general, there are two fundamental challenges in the
event detection for a wireless sensor network: 1) the detec-
tion accuracy is limited by the amount of noise associated
with the measurement process and the reliability of sensor
nodes because of the low-end inexpensive devices; 2) the
source of energy for a sensor node is most often an attached
battery cell. Centralized event detection algorithms, which
require all sensor nodes to transmit their individual sensor
measurements and their geographical locations directly to a
central monitoring node, are not suitable for a wireless sensor
network due to the energy constraints. A localized and dis-
tributed detection algorithm is highly preferred for wireless
sensor networks.

The basic idea of distributed detection [1] is to have a
number of independent sensors each makes a local decision
(typically a binary one) and then to combine these decisions
at a fusion sensor to generate a global decision. Statistically
the distributed event detection could be modelled as a hy-
pothesis test problem. n sensors observe an unknown hy-
pothesis. The sensor observations are independent and iden-
tically distributed given the unknown hypothesis. Each sen-
sor transmits its decision over a multiple access channel to a
fusion sensor. Based on the received sensor decision, the fu-
sion sensor makes the final decision regarding the unknown
hypothesis.

In this paper, we propose an optimal fault-tolerant detec-
tion algorithm that 1) considers both measurement error and

sensor fault in fault correction and 2) is able to achieve better
balance between detection accuracy and energy usage. The
remaining of the paper is organized as follows. In Section 2,
we briefly review some related work of distributed detection
in wireless sensor networks. Theoretical analysis and the de-
tail of the proposed algorithm is presented in Section 3. In
Section 4, We present our experiments and results. We give
our conclusions in Section 5.

2. STATEMENT OF THE PROBLEM AND
RELATED WORK

N sensor nodes are deployed over a interested region to per-
form event detection. All sensors have the same modalities
and ability to communicate with each other. Each sensor
node has n neighbor sensors. A sensor node could make its
binary decision independently based on its own measurement
from the noisy environment. The network considered is also
likely to contain faulty sensor nodes due to the harsh envi-
ronment and manufacturing reasons. The faulty behavior we
consider includes that normally an event, if happens, should
be detected as “event” by sensors at the location, but the de-
tection decision is converted to “no-event” due to the sensor
fault, or vice versa.

Let us consider a two layer detection system that consists
of a fusion sensor and its n neighbor sensors. The fusion sen-
sor makes a final decision whether an unknown hypothesis is
H0 or H1 based on the decision from the n sensors. Let q0
and q1 denote the prior probabilities of H0 and H1 respec-
tively, Xi denote the observation of the ith sensor, i = 1, ...,n.
When Hj is true, Xi follows the probability distribution func-
tion p(xi|Hj), j = 0,1. Let ui denote the binary decision (0
or 1) of the ith sensor, which is the output of likelihood ratio
threshold test [2],

p(xi|H1)
p(xi|H0)

H1
>

<
H0

λ (1)

where λ is the common threshold used for all sensor nodes.
The sensor nodes transmit their decisions to the fusion

sensor. Based on the received sensor decisions, the fusion
sensor makes the final decision u0 with the optimum fusion
rule which, in this case, is a k-out-of-n rule [3]. Let u0 = 0
if the fusion sensor decides H0 and let u0 = 1 if the fusion
sensor decides H1, we have,

u0 =
{

1, u1 + · · ·+un ≥ k
0, u1 + · · ·+un < k (2)

where k is an integer between 1 and n.



For all the sensors, let PF denote the identical false alarm
probability and PD the identical detection probability, we
have

PF = P(ui = 1|H0) (3)

PD = P(ui = 1|H1) (4)

The quality of the fusion sensor decision u0 is measured
by the system false alarm probability QF and the system de-
tection probability QD,

QF =
n

∑
i=k

(
n
i

)
Pi

F(1−PF)n−i (5)

QD =
n

∑
i=k

(
n
i

)
Pi

D(1−PD)n−i (6)

Under Bayesian detection framework, the probability of
detection error with n sensor nodes is given by,

Pn
e = q0QF +q1(1−QD) (7)

Zhang et al. show that given k, the probability of detec-
tion error is a quasiconvex function of λ and has a single
minimum that is achieved by the unique optimal λopt [3].
The overall optimal solution is obtained by optimizing (k,λ )
pair via the SECANT algorithm.

Recently Krishnamachari and Iyengar introduce a fault-
tolerant event detection method for wireless sensor networks
[4]. Based on the observation that the sensor faults are likely
to be stochastically uncorrelated, while event measurements
are likely to be spatially correlated, they propose to let an
individual sensor node communicate with its n neighbors
and use their binary decisions to correct its own decision. A
majority voting scheme is shown to be the optimal decision
scheme for fault correction in their work. In this paper, we
propose to improve effectiveness (in terms of fault tolerance)
and the efficiency (in terms of energy consumption) of their
approach by considering two additional important questions:

1. How to include the decision error caused by the noisy
measurement into consideration during fault-tolerant event
detection? In Krishnamachari and Iyengar’s work [4], they
only consider the sensor fault problem. The measurement
error is not discussed by assuming that a preset threshold
enables each sensor node to make its own binary decision.
However, the measurement inaccuracy has direct impact on
the effect of fault correction.

2. How to decide a proper neighborhood size n for a
sensor node? To our knowledge, this problem has not been
studied at all in the literatures. Currently the neighborhood
size n is typically determined by the maximum communica-
tion radius of a sensor node, which is not energy-efficient.
A large n will result in extensive communication within
the network and thus consume great amount of energy. In
general, an energy-efficient detection scheme should be
able to make accurate detection while keeping the energy
dissipation at its minimum.

These two problems are theoretically analyzed in the fol-
lowing section.

3. THEORETICAL ANALYSIS

3.1 Optimization under both noisy measurement and
sensor fault

Define two situations in event detection,

H0 : normal
H1 : event

The objective of the distributed detection is to choose the
optimal threshold λ at each sensor, as well as the optimal k
at the fusion sensor, given q0, q1 and the neighborhood size n
(usually determined by the maximum communication radius
of a sensor node). Zhang et al. studied this problem and their
work can be summarized as the following theorem without
proof (refer to [3] for the detail of the proof).

Theorem 1 For fixed n and k, the probability of detection
error Pn

e is a quasiconvex function of λ and has a single min-
imum that is achieved by the unique optimal λopt . λ mini-
mizes Pn

e if is satisfies

ln
q1

q0
+ lnλ +(k−1)ln

PD

PF
+(n− k)ln

1−PD

1−PF
= 0 (8)

The optimal (τ(=lnλ ), k) pair could be obtained based on
Equation (8) via an optimization algorithm. Then each
neighborhood sensor makes its own decision with the τ and
the fusion sensor makes its final decision based on the k-out-
of-n rule.

To consider sensor fault, let Pf = β + γ be the probabil-
ity of the sensor fault. β denotes the probability of type I
sensor fault: originally an event is not detected and the de-
cision is converted to event detected due to the sensor fault.
γ denotes the probability of type II sensor fault: an event is
detected originally and the decision is converted to event un-
detected by the sensor fault. Let P̃F and P̃D be false alarm
and detection probability of each sensor, and Q̃F , Q̃D are
system false alarm and detection probability after the con-
sideration of sensor fault. Without loss of generality, let’s
assume that these two type of sensor faults are symmetric,
i.e., β = γ = 1

2 Pf .
The probability of detection error P̃n

e needs to be mini-
mized

P̃n
e = q0Q̃F +q1(1− Q̃D) (9)

Since Pf is a constant, according to Theorem 1, when n
is fixed, for a given k, λ minimizes P̃n

e if it satisfies

ln
q1

q0
+ lnλ +(k−1)ln

PD(1−Pf )+ 1
2 Pf

PF(1−Pf )+ 1
2 Pf

+(n− k)ln
1−PD(1−Pf )− 1

2 Pf

1−PF(1−Pf )− 1
2 Pf

= 0

(10)

The optimal threshold pair (τ(=lnλ ), k) for fault-tolerant dis-
tributed detection could be obtained based on Equation (10)
via an optimization algorithm.

3.2 How to choose n?

Assume that each sensor node, when activated, consumes
the same amount of energy. If we could choose a minimum



neighborhood size n for a given detection error bound, the
energy consumption during detection will be minimized.

Under the Bayesian framework, the detection scheme
that optimizes (λ ,k) pair gives us the minimum detection er-
ror P̃n

e,min = min(P̃n
e ). We claim,

Lemma 1 Given sensor fault probability Pf , the minimum
probability of detection error P̃n

e,min approaches 0 exponen-
tially with infinite neighborhood size n. for all is.

Essentially it can be shown that P̃n
e,min is bounded be-

tween 0 and the Chernoff bound [5], which approaches 0 ex-
ponentially as n approaches ∞. By squeeze theorem, Lemma
1 is proved. Space constraints preclude us from providing
the detail of the proof.

Remark 1 With Lemma 1, it is straightforward that, for a
given upper bound of the detection error, the minimal neigh-
borhood size nmin exists.

With Remark 1, better balance between detection accuracy
and energy consumption is able to be achieved.

3.3 The Algorithm

We propose a two-loop search algorithm to find the optimal
solutions for a given bound of detection error Pe,bound and a
sensor fault probability Pf . In the inner loop, the optimal (τ ,
k) pair is obtained through numerical optimization for a fixed
n. In the outer loop, a binary search is employed to find the
minimum n that satisfy the given error bound.

Once we obtain the optimal τ , k, and n, the detection
could be done as follows,

1. Set (preset before the deployment or through online
broadcasting after the deployment) τ , k, and n in each
sensor node.

2. Each sensor obtains its binary decision ui based on its
measurement and τ(= lnλ ) with threshold test.

3. Each sensor obtains the binary decisions of its n neigh-
bors u1,u2, ...,un (randomly selected within the commu-
nication radius) and compute u1 + · · ·+un.

4. Each sensor makes its final fault-tolerant decision based
on the k-out-of-n rule.

4. EXPERIMENTS AND DISCUSSION

We consider the detection of known signals in Gaussian
noise. The event to be observed by the sensor is xi = si + zi,
where si = ±d is the interested signal and zi is a Gaussian
random variable with zero mean and unit variance. Define

H0 : si = −d
H1 : si = d

The log-likelihood ratio τi for this problem is τi = 2dxi.
The sensor false alarm and detection probabilities are given
by,

PF = Q(
τ

2d
+d) (11)

PD = Q(
τ

2d
−d) (12)

where τ is the log-likelihood ratio threshold and

Q(z) =
∫ ∞

z

1√
2π

e−
x2
2 dx (13)

Our objective is to find the optimal τ , k, and n, given the
prior probabilities q0, q1, a detection error bound Pe,bound ,
sensor fault probability Pf , and the maximum neighborhood
size nmax (determined by the maximum communication ra-
dius of a sensor node).

4.1 Interesting Properties on P̃n
e , P̃n

e,min, n and τ

Fig. 1 shows the probability of detection error against log-
likelihood ratio threshold τ with q0 = 0.75, q1 = 0.25, d =
0.5, Pf = 12% and different n. The (n, k) pairs in the fig-
ure indicate the optimal fusion rule for the given n. “*” in-
dicates the minimum probability of detection error for the
corresponding (n, k) pair. The top pair (n = 3,k = 3) corre-
sponds to the curve with the highest “*” position; the second
pair (n = 5,k = 4) corresponds to the curve with a “*” in the
second highest position, and so on. From Fig. 1, we can see
clearly that the minimum of detection error P̃n

e,min decreases
when n increases, which confirms Lemma 1.

However, Lemma 1 only holds for the optimal solution
solved from Equation (8) and some sub-optimal solutions
nearby as shown in Fig. 1. In general, the probability of
detection error P̃n

e is NOT always a decreasing function of
n if a log-likelihood threshold τ is chosen outside the small
interval around optimal τ .

Our experiment shows that the absolute difference be-
tween the two prior probabilities |q0 − q1| is proportional to
the reduction rate of P̃n

e,min. In other words, P̃n
e,min decreases

more quickly against n with a larger |q0 − q1|. This result
indicates that if we have prior knowledge about the events in
advance, less energy (smaller n) is required to maintain the
same level of detection accuracy.

It is also interesting to notice that in Fig. 1 the optimal k
(i.e. kmin) = 3,4,5,6,7,8 for n = 3,5,7,9,11,13 respectively.
The majority voting rule (kmin = 1

2 n) is NOT the optimal fu-
sion rule in this case any more. Our experiment also shows
that in the particular case of q0 = q1, majority voting rule is
always the optimal fusion rule. In other words, Theorem 2 in
[4] is only a special case for q0 = q1 when both measurement
error and sense fault are considered in fault corrections.

4.2 Detection Performance

In all experiments, we let d = 1, q0 = 0.75, q1 = 0.25 and
Pf = 10%. We also assume that the event region is in the 10
by 10 area at the bottom-left corner of the operation zone.

Fig. 2 shows the initial detection results (step 2 of the
proposed detection scheme) with 400 sensors in total and 100
sensors in the event region. The log-likelihood ratio thresh-
old τ is set at τ = 0.5964 based on Equation (10). If the event
is detected by a sensor node, it is marked by a circle “◦” in
the corresponding location. Otherwise the location is marked
by a dot “·”. We simulated 10% sensor faults by reversing the
sensor decisions. A “+” indicates that originally an event is
detected at the location and the decision is converted to no-
event due to sensor fault, while a “×” represents the case of
no-event detected originally. The probability of detection er-
ror is 19.75% with measurement error and sensor fault. The
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Figure 1: Probability of detection error P̃n
e v.s. the neighbor-

hood size n for the case of q0 = 0.75, q1 = 0.25, d = 0.5 and
Pf = 0.12.

final detection result (step 3 and 4 of the proposed detection
scheme) is presented in Fig. 3. After applying k-out-of-n
rule (n = 3 and k = 2 computed based on Equation (10)),
many incorrect detections (including false alarm and missing
detection) have been corrected. As indicated in Fig. 1, the
minimum probability of detection error is reduced more as
n increases. However we could still offer 97% detection ac-
curacy by choosing n = 3 if energy conservation is our top
priority.

Notice that the detection accuracy in our simulation is
lower than the theoretical estimation, which is mainly caused
by the confusions along the boundary of the event region (see
Fig. 3). How to identify the sensor nodes near the boundary
and process their information accordingly are still challeng-
ing problems in event detections. We leave it for the future
research.

We design two sensor networks, one with 20×20 sensors
and the other with 100× 100 sensors. We repeat the exper-
iment 100 times. The average of detection errors of initial
and final detection are shown in Table 1. In all cases, the de-
tection errors have been greatly reduced. The effectiveness
of the proposed algorithm is obvious. Notice that more en-
ergy will be saved by choosing a smaller n for a larger sensor
network.

Table 1: Average initial and final detection errors for sensor
networks with 400 and 10,000 sensor nodes for the case of
Pf = 10%, q0 = 0.75, q1 = 0.25 and d = 1.

#o f SensorsN τ n,k Ini. Err. Final Err.
400 0.5964 3,2 20.78% 6.75%
400 0.2482 9,5 21.65% 4.31%

10,000 0.5964 3,2 20.70% 5.32%
10,000 0.2482 9,5 21.62% 3.21%

5. CONCLUSIONS

In this paper, we propose a fault-tolerant distributed detection
scheme for wireless sensor networks, in which both measure-
ment error and sensor fault are tightly coupled to achieve bet-
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Figure 2: Initial detection results with 10% sensor fault (Pf =
10%).
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Figure 3: Final detection results with k-out-of-n rule (n = 3,
k = 2).

ter detection. In the proposed scheme, the neighbor size n of
fault correction is chosen based on the given detection error
bound, such that better balance between detection accuracy
and energy usage is obtained. Our experiment confirms the
effectiveness of the proposed algorithm. Our work makes it
possible to perform energy-efficient fault-tolerant event de-
tections in a wireless sensor network.
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