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ABSTRACT 

For tracking applications, the estimation of the “true” mo-

tion vector is crucial. The Complex Discrete Wavelet Trans-

form (CDWT) based motion estimation algorithm developed 

by Magarey and Kingsbury produced superior results for the 

estimation of the dense flow field. In this work, the use of 

the CDWT-based motion estimation algorithm for the vi-

sion-based tracking of targets has been evaluated. First, a 

comparison of the results of the CDWT-based ME algorithm 

with the results of the Lucas and Kanade’s (LK) and Horn 

and Schunk’s (HS) motion estimation algorithms is per-

formed. Second, the tracking performances are compared for 

the cases of CDWT-based and LK-based flow fields. Lastly, 

the tracking performance of the proposed tracker is evalu-

ated by using a number of test sequences and is compared to 

the Correlation and Mean Shift Tracker. It is observed that it 

can successfully track various different targets and is robust 

to changes of the target signature. 

1. INTRODUCTION 

Optical flow estimation methods have been used for track-

ing in several ways. The most popular flow estimation 

methods are the Lucas and Kanade’s [1], the Horn and 

Schunk’s [2], and the Fleet and Jepson’s [3] methods. An 

extensive review of the performances of the optical flow 

methods can be found in [4]. 

In the recent years, the Discrete Wavelet Transform 

(DWT) has been used for motion estimation in a number of 

ways. Since the DWT is shift-variant [5,6,7,8], it cannot be 

directly used for motion estimation. Several modifications 

have been proposed to make the DWT shift-invariant. In [6], 

the Redundant Discrete Wavelet Transform (RDWT) is used. 

The RDWT is shift-invariant since the spatial sampling rate 

is fixed across scale. It is also called the “undecimated wave-

let transform.” Due to the lack of decimation it is highly re-

dundant. In [7], the Overcomplete Discrete Wavelet Trans-

form is proposed to overcome the shift-variant property of 

the DWT. These two methods, however, provide only invari-

ance for integer-shifts. In [8], the low redundant Complex, 

directional Double-Density Wavelet Transform (CDDWT) is 

proposed. 

In this work, the use of the Complex Discrete Wavelet 

Transform (CDWT) based motion estimation method is 

evaluated and used for target tracking. The CDWT is devel-

oped by Magarey and Kingsbury [9] for efficient phase-

based motion estimation. The CDWT is approximately shift-

invariant and has good directional selectivity. The CDWT-

based motion estimation algorithm is robust and provides 

sub-pixel accuracy which is important for tracking. 

The rest of this paper is organized as follows. Section 2 

briefly reviews the CDWT-based motion estimation algo-

rithm. Section 3 presents the proposed tracker. Section 4 

gives the simulation results. We end with a discussion of the 

results attained in this work. 

2. CDWT MOTION ESTIMATION 

The Complex Discrete Wavelet Transform (CDWT) based 

motion estimation algorithm is developed by Magarey and 

Kingsbury [9] for the efficient implementation of the accu-

rate and robust phase-based optical flow estimation method 

of Fleet and Jepson [3]. A detailed description of the method 

can be found in [9].  

 

2.1 The Complex Discrete Wavelet Transform (CDWT) 

The CDWT is similar to the DWT, but uses complex-valued 

kernels and has a mirror branch, which, on the overall results 

in a 4 to 1 redundancy. A 1-d filter pair is used which is a 

complex 4-tap filter that can be modelled as Gabor filters. 

The transform uses a dual-track structure in which the com-

plex conjugates of the filter pair is used for row filtering in 

the lower track. In the first level, a prefilter is used to assure 

that the wavelet filters are exactly scaled versions of each 

other. The result is six complex detailed subimages and two 

lowpass images. The structure of the CDWT is shown in 

Figure 1. 

2.2 CDWT-based Motion Estimation 

The motion estimation algorithm has a hierarchical structure 

and proceeds from coarse to fine resolution levels. At each 



level, motion is estimated for each subpel and the resultant 

flow field is propagated to the next resolution level by scal-

ing the flow vectors and warping the transform coefficients 

of the reference image accordingly. For estimating the mo-

tion of each subpel, a quantity called the “subband squared 

difference” is minimized. This quantity is obtained by the 

sum of absolute differences of the values of the subpels in the 

six detailed subimages. This corresponds to a quadratic sur-

face whose minimum gives the desired displacement. These 

surfaces are accumulated through the levels to obtain the 

“cumulative squared difference”. The result of the algorithm 

is a real-valued motion estimate for each pixel in the image. 

The structure of the motion estimation algorithm is shown in 

Figure 2. 

 
Figure 1. 2-D CDWT (2 levels shown). 

3. THE TRACKING ALGORITHM 

The proposed tracking algorithm uses the dense flow field 

generated by the CDWT-based motion estimation algorithm. 

The aim is to track any kind of target selected by the opera-

tor. The target can be rigid or non-rigid and can change pose, 

size and shape during tracking. Camera motion can also be 

present in the sequences. The usage of the flow field is 

therefore suitable to cope with all these problems. 

 

 
Figure 2. CDWT-based motion estimation algorithm. 

In the proposed tracking algorithm, the dense flow field 

within the target gate is evaluated and used in computing the 

displacement of the target. This flow information is also used 

for adapting the track gate to the changes of the target size. 

The accuracy of the optical flow estimator is therefore crucial 

for the success of the tracking algorithm. This is the main 

reason why the CDWT-based motion estimator is selected for 

this purpose. 

4. SIMULATION RESULTS 

Simulations have been performed to test different aspects of 

the algorithm. First, the quality and suitability of the flow 

field generated by the CDWT-based motion estimation algo-

rithm have been evaluated. Second, simulations replacing 

the CDWT-generated flow in the tracking algorithm with the 

Lucas and Kanade’s flow are performed. Lastly, the pro-

posed tracking algorithm is compared with the Correlation 

Tracker and the Mean Shift Tracker [10]. 

 

4.1 Optical Flow Estimation Results 

The accuracy of the flow field is evaluated by using virtual 

and real image sequences presented in [4]. The flow field is 

compared with Lucas and Kanade’s (LK) and Horn and 

Schunk’s (HS) flow estimation algorithms. 

4.1.1   Error Measures 

Two error measures have been used. The angular measure [4] 

is defined by 
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and the magnitude measure is defined by 
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Here, u and v represent the components of the flow vector 

and the subscript c indicates the components of the correct 

flow.  

4.1.2   Test Sequences 

One virtual and one real image sequence will be presented in 

this paper. The sequences are shown in Figure 3. 

Figure 3. Yosemite (left) and SRI (right) Test Sequences. 

Yosemite Sequence: The motion of the clouds is trans-

lational and 2 pixels to the right. The rest of the flow is di-

vergent, with speeds of about 5 pixels per frame in the lower 

left corner. The correct flow is shown in Figure 4 (upper-

left). 

SRI Sequence: The motion is translational in the fronto-

parallel plane. The camera translates parallel to the ground 

plane, perpendicular to its line of sight, in front of clusters of 

trees. Velocities are as large as 2 pixels per frame. 

4.1.3   Results 

The comparison results of the Yosemite sequence is given in 

Table 1. The dense flow fields generated by the algorithms 

are shown in Figure 4.  
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Figure 4. Yosemite Sequence flow diagrams. Correct flow 

(top-left), CDWT-based ME (top-right), LK (bottom-left), 

and HS (bottom-right). 

In Table 1, the threshold column indicates the value used 

for thresholding out the flow vectors having confidence less 

than this value. The ratio of the remaining ones to the total 

number of pixels is given as the density. The errors are com-

puted on this thresholded pixels only. The number of frames 

used for computing the flow is also given in the table. The 

last row gives the error of the CDWT-based method for the 

pixels at locations thresholded according to the LK method 

with threshold 1.0.  

 

Table 1. Yosemite Sequence Error Results. 

Method 
Thres-

hold 
Density 

(%) 

Angle  

Error 

Magnitude 

Error 

No. of 

Frames 

1.0 32,2 4,4875 0,0952 15 LK 

0.0 81,0 9,9308 0,4968 15 

5.0 26,6 5,4825 0,1407 15 HS 

0.0 81,0 9,5685 0,4548 15 

0.95 49,1 6,8730 0,2390 2 

0.00 92,8 7,7314 0,2950 2 

CDWT-

based ME 

LK 32,1 6,2745 0,1378 2 

 

Investigation of the table reveals that, although the 

CDWT-based method is not as accurate as the LK, taking 

into account the whole image, i.e. for zero thresholds, it is 

observed that the CDWT-based method is more accurate. 

This can also be seen by the flow diagrams shown in Figure 

2. The angle errors are also shown as the background of the 

flow diagrams as grey levels where darker regions indicate 

more error. In the upper region where there is only cloud 

motion, the CDWT-based flow is highly smooth and accurate 

where the other algorithms produced irrelevant results. 

For the SRI sequence, the flow fields generated by the 

CDWT-based method and the LK are shown in Figure 5. 

This is a real sequence, therefore no correct flow information 

is present.  

Investigation of the flow fields reveals that the flow gen-

erated by the CDWT-based method is more accurate and 

smooth than the one generated by LK’s method. 

Figure 5. SRI Sequence flow diagrams. CDWT-based ME 

(left) and LK (right). 

4.2 Tracking Results 

The suitability of the flow generated by the CDWT-based 

motion estimation method is evaluated in three different 

ways. Firstly, the flow method, secondly, the proposed track-

ing algorithm is evaluated. In the last part, other properties 

of the tracking algorithm is evaluated. 

4.2.1   Flow Comparison 

The first comparison is performed by changing only the flow 

estimation method while leaving the rest of the tracking algo-

rithm the same. The LK algorithm is used for this compari-

son. Two results will be presented here. Representative 

frames of the sequences are shown in Figure 6. 

Figure 6. Pursaklar-2 (left) and Air32 (right) Sequences. 

The first sequence includes severe camera motion while 

aiming the plane. The tracking algorithm maintained track 

until the 295th frame while using the flow field generated by 

the CDWT-based method and until the 165th frame while 

using the flow field generated by LK. 

In the second sequence, there is limited camera motion, 

but there are extensive maneuvers taken by the target. For 

this sequence, the tracker maintained track until the 531st 

frame using the flow field generated by the CDWT-based 

method and until 347th frame while using the one generated 

by LK. 

4.2.2   Track Comparison 

The second evaluation is performed by comparing the track 

performance of the proposed CDWT-based tracking algo-

rithm with the Correlation Tracker and the Mean Shift 

Tracker [10].  

The sequence presented here is shown in Figure 7. There 

is slight camera motion throughout the sequence and the car 

at the centre of the frame moves away from the camera. 



The CDWT-based tracking algorithm maintained track 

until the 725th frame, the Correlation Tracker until the 39th, 

and the Mean Shift Tracker until the 371st frame. Since target 

motion is very small compared to the distance between pix-

els, the target drifts from the gate of the Correlation Tracker. 

The similarity of the background clutter statistics to the target 

statistics makes it a difficult case for the Mean Shift Tracker. 

The CDWT-based tracker, however, follows the flow infor-

mation and maintains track successfully. 

Figure 7. Pursaklar-1a Sequences. 

4.2.3   CDWT-based Tracker Evaluation 

The proposed tracking algorithm is based on the dense 

flow field which provides valuable information for the 

tracker. The changes occurring on the target are monitored 

using this information. Figure 8 demonstrates such a case. 

The car in the sequence is approaching towards the cam-

era. Slight camera motions are also present. The initial target 

gate can be seen in the left frame and the final gate can be 

seen in the right frame. It is clearly seen that the target gate 

has been adapted appropriately. This feature is very impor-

tant for target tracking. 

Figure 8. The 1st (left) and 736th (right) frames of the Pursak-

lar-1b Sequence. Demonstration of target size adaptation of 

the CDWT-based tracking algorithm. 

5. CONCLUSION 

In this paper, the use of the CDWT-based motion estimation 

algorithm for target tracking purposes has been evaluated. 

The dense flow field generated by the CDWT-based motion 

estimation algorithm has been compared with the Lucas and 

Kanade’s and Horn and Schunk’s flow estimation methods. 

Both virtual and real sequences have been used for this 

comparison. The CDWT-based method, although not as pre-

cise as the others, has produced a denser and smoother flow 

field than the other two methods. Especially for regions 

where only low frequency components were present, the 

CDWT-based method was the only one producing reliable 

results. 

A tracking algorithm using the flow generated by the 

CDWT-based motion estimation algorithm is also proposed 

and evaluated by changing the flow estimation method with 

the Lucas and Kanade’s algorithm. For most of the sequences 

the performances were similar. However, in some cases, us-

ing the Lucas and Kanade’s flow resulted in better tracking 

while in others using the CDWT-based flow resulted in a 

better track.  

The proposed tracking algorithm using the CDWT-based 

generated flow has also been compared with the Correlation 

Tracker and the Mean Shift Tracker. It is observed that the 

proposed tracker were successful in maintaining track for 

highly cluttered environments where the target shape is also 

changing dramatically. 

Among the other properties of the proposed tracker, the 

most important one is the use of the information contained in 

the flow field which is utilized for adapting to target changes. 

Taking into account all these aspects and evaluations the 

CDWT-based motion estimation method proved to be suit-

able for vision-based target tracking. The proposed tracking 

algorithm making use of the CDWT-based motion estimator 

is successful in tracking vision-based targets. 
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