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ABSTRACT

In this paper, a new approach which is called the
common matrix approach is proposed for face
recognition. The common matrix for each class can
be calculated either using Gram-Schmidt
orthogonalization method or using scatter matrix of
each class. In both ways, orthonormal matrices in the
indifference subspace represent the directions that
contain important discriminative information. The
proposed approach overcomes the small sample size
problem and the dimensionality problem in face
recognition. The applications on AR-Face database
give satisfactory results.

1. INTRODUCTION

Face recognition (FR) has a wide range of
applications, such as face-based video indexing
and browsing engines, human-computer
interaction, and multi-media
monitoring/surveillance. Developing a
computational model for face recognition is quite
difficult, because faces are complex,
multidimensional and have meaningful visual
stimuli.

Liner Discriminant Analysis (LDA) and Principal
Component Analysis (PCA) are the basic face
recognition techniques [1-4]. LDA and PCA have
been successfully used as a dimensionality
reduction technique to many classification
problems, such as speech recognition, face
recognition, handprint recognition and
multimedia information retrieval. It is commonly
believed that a direct LDA solution for such
high-dimensional data is infeasible [1,3,5]. LDA-
based methods often fail to deliver good
performance when face patterns are subject to
large variations in view-points, illumination or
facial expression, which result in a highly

nonlinear and distribution of face

images.
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Improvements on the LDA such as quadratic
LDA [5], Fisher’s LDA [6], and direct, exact
LDA [3] were proposed. Jing et al. used
PCA+LDA method for face recognition [7]. In
their work, PCA is used to project images from
the original image space into a face-subspace,
where dimensionality is reduced, so that LDA
can be applied without trouble. A potential
problem is that the PCA criterion may not be
compatible with the LDA criterion thus the PCA
step may discard dimensions that contain
important discriminative information [3]. To
prevent this, LDA without a separate PCA step
DLDA have been developed [5].

Linear feature extraction based methods have
been widely used in face recognition. Fisherfaces
and Eigenfaces are two most famous techniques
among them. In Fisherface method [6], PCA is
first used to reduce the dimensionality of the
feature space. Then in the lower dimensional
PCA subspace, the Fisher discrimination vectors
are computed. However Fisherface method has a
drawback that it cannot completely solve the
small sample size problem, which occurs when

the within-class scatter matrix,S,, is singular.

The Eigenface method is based on linearly
projecting image space to a low dimensional
feature space. However, the Eigenface method,
which uses PCA for dimensionality reduction,
yields projection directions that maximizes the
total scatter across all classes, i.e., across all
images of all faces [8]. In choosing the
projection which maximizes total scatter, PCA
retains unwanted variations due to lighting and
facial expression [6].

Yang et al. combined PCA-transformed feature
vectors and Kernel PCA transformed feature



vectors via complex vectors [9]. Then, the
combined feature vectors are applied to a feature
fusion container called Complex Fisher Linear
Discriminant Analysis (Complex LDA) for a
second fetaure extraction. Cevikalp et al.
proposed a new face recognition method called
the Discriminative Common Vector method based
on a variation of Fisher’s LDA for the small
sample size case [10]. In their work, two
different algorithms are given to extract the
discriminative common vectors representing each
person in the training set of the face database.

New face recognition approaches are needed,
because, although much progress has been made
to identify face taken from different viewpoints,
we still cannot robustly identify faces under
different illumination conditions, or when the
facial expression changes, or when a part of the
face is occluded on account of glasses or parts of
clothing. In all approaches wused for image
recognition, an image with the size of nxm pixels
is generally represented by a vector in an (n.m)
dimensional space. These (n.m) dimensional
spaces are too large to allow robust and fast
object recognition.

In this paper, a new approach is proposed to
overcome the small sample size problem and
dimensionality problem in face recognition. The
proposed approach depends on calculation of
common matrix for each class which can be
calculated with two different methods. In one
method, difference matrices with size of nxm of
any class are directly orthonormalized instead of
the orthonormalization of (n.m) dimensional
vectors using the Gram-Schmidt
orthogonalization method [11]. The orthonormal
matrices constitute difference subspace for that
class. The projection matrix for this subspace is
3-dimensional (size of nxmxp) and called a
tensor [12,13]. When the projection of any pixel
matrix in any class onto the difference subspace
of that class is subtracted from itself, the
common matrix for that class is obtained. Use of
the common matrix in face recognition gives
satisfactory results for the training and test sets.
In the second method of this approach, the
scatter matrix with size of (n.m)x(n.m) is
constructed using mxm submatrices instead of
using (n.m) dimensional vectors.The
eigenmatrices corresponding to nonzero
eigenvalues constitute difference subspace and
the eigenmatrices corresponding to  zero
eigenvalues constitute indifference subspace
[14]. The projection of any pixel matrix in any
class on the indifference subspace gives the
common matrix for that class. This second
method has the same dimensionality problem
with the vectorization of the images since they

both have the scatter matrix with the

dimensions.
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Our aim is to develop a computational model of
face recognition which is fast, reasonably
simple, and accurate in constrained environments
such as an office or a household. The proposed
approaches have advantages over the other face
recognition schemes in its speed and simplicity,
learning capacity and relative insensitivity to
small or gradual changes in the face image.

2. COMMON MATRIX APPROACH

In this proposed approach we extract the common
properties of images in each individual class in
the training set by eliminating the differences of
images. A common matrix for each class is
obtained and then used in face recognition. To
find the common matrix for each individual class
from the training set we use two methods. In the
first one Gram-Schmidth orthogonalization
method and in the second, within-class scatter
matrix of each class are used.

2.1 Obtaining Common Matrix Using the
Gram-Schmidt Orthogonalization Method

Let us denote images in each class with pixel

matrices A :

c c c
a, 4dp Ay
C
ay
¢ _
AL =
c c c
_anl an2 . . anm_
where ¢ is the class number (c=1,....,C) and i
indicates the number of images (i=1,...,K).

Taking any pixel matrix of any class in the
training set as a reference we find difference
matrices:

c _ gc c
By =4;, -4
where Alc is the subtrahand matrix.

The orthonormal basis matrices f),..., By, are

obtained by using the Gram-Schmidt
orthogonalization method [11]. In the
orthogonalization procedure, the matrices with

size of (nxm) are used instead of (n.m)
dimensional vectors. The difference subspace
B°of the class ¢ is  defined as

B =span(p,...,fc_;). Any pixel matrix from



each class can now be projected onto the
difference subspace of that class. Then by
subtracting the result from that pixel matrix we
can find the common matrix for that class:

A, = A=A BB~ = (A7 BB

The common matrix is independent from the

subtrahand matrix ( 4, ) and reference matrix 4, .

Therefore a unique common matrix is obtained
for each class.
In the testing procedure we take the projections

of any pixel matrix Af from the test set onto

difference subspace of each class. Then by
subtracting the result from test pixel matrix we

c
remain

A = A= (A BV B — = (AL B ) B

can find remaining matrix 4 for each class :

The decision criterion is defined as:

]
If the test image belongs to the class c, the
and A’ should be

common

_ . c c
w=argmin { H 4, . —A

common
1<e<C

distance between A

remain

minimum.

2.2 Obtaining Common Matrix Using
Subspace Methods

A common matrix for each individual class is
also obtained using the within-class scatter
matrix of that class. In this approach, the
information in the direction of the eigenmatrices
corresponding to nonzero eigenvalues of the
scatter matrix 1is discarded. Therefore the
projection of any pixel matrix in any class onto
the eigenmatrices corresponding to zero
eigenvalues gives the common matrix for that
class.

The within class scatter matrix with size of
(n.m)x(n.m) is constructed using mxm
submatrices instead of using (n.m) dimensional
vectors.

We define images in each class as:

c
Y1
c —_—
A =
c
Ya
where y;’s are the m-dimensional row vectors of

A

1

If we find the average matrix in each class, u°
and subtract it from all pixel matrices in that

class we can find the pixel matrices ( 4;):

__C
[V
Y. Y,
- cC
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yn _yn_
Then within-class scatter matrix S,,CV, can be

obtained as follows:

| ooanl.,
. [(?.i)'(?i)]m

Then we find the eigenvalues and the
eigenmatrices of the within class scatter matrix.
To find the common matrix, we project any pixel
matrix onto the subspace spanned by the
eigenmatrices corresponding to the zero
eigenvalues. Then it is observed that the common
matrix for each individual class is the same with
the common matrix obtained from Gram-Schmidt
orthogonalization method.

a0l
S .
[(?f.)'(?f.)]mxm

the
taking

In the

remaining matrix A

first of all,
is calculated by

testing procedure,
:emain
the projections of any pixel matrix from the test
set onto the subspace spanned by the
eigenmatrices corresponding to the zero
eigenvalues. Then the decision criterion given in

the section 2.1 is wused in the recognition
process.

3. EXPERIMENTAL STUDY
The AR-Face database is used in the

experimental study [15]. The database includes
frontal view of faces with changes in
illumination and facial expressions. Each face is
represented by a 192x256 pixel matrix. We
randomly selected 37 individuals (20 males and
17 females). The elements of pixel matrices are
8-bit gray levels whose values change between 0-
255. The size of pixel matrices are reduced to
50x40. Two different works are made in the
experimental study.

i) In the first part, only nonoccluded 63 images
from the training set and 63 images from the test
set were chosen for every subject (class).
Randomly selected 100 images were used in the



training process of algorithms and the remaining
26 images were used in the test process.

In the first method, we find 99 orthonormal basis
matrices from 100 pixel matrices. When the
projection of any matrix belonging to each class
in the training set onto the orthonormal basis
matrices is subtracted from itself, the common
matrix for that class is obtained. If the test
matrix is used in the above procedure, the
resulting matrix will be the remaining matrix.
According to the decision criterion given in
sectin 2.1 we classify the test pixel matrices and
recognition rate of %99.1 is obtained in average.

In the second method, we used the indifference
subspace spanned by  the eigenmatrices
corresponding to the zero -eigenvalues and
project each test pixel matrix on to the this
subspace. So the remaining matrix from each test
pixel matrix is calculated. When the decision
criterion is used in the recognition process, the
same results with that of first method are
obtained.

ii) In the second part of the experimental study,
totally only nonoccluded 14 images (7 images
from the training set and 7 images from the test
set) were chosen for every class. The recognition
rates were computed by the “leave one out”
strategy since the training set size is relatively

small. When the decision criterion given in
section 2.1 is used, the recognition rate was
obtained as %97.7 in average.

4.CONCLUSION
The small sample size problem and

dimensionality problem are the most important
problems in face recognition. The small sample
size problem has been overcome with different
techniques.

It is commonly believed that the solutions for
high-dimensional data are still infeasible.
Usually an image of size (nxm) pixel matrix is
generally represented by a vector in an (n.m)
dimensional space. Then PCA and LDA are used
to reduce dimension of these vectors. In
reduction process, some important information
can be discarded. Since there is no
dimensionality reduction in our proposed
method, all important information is included in
the common matrix.

Since our aim is to develop a computational
model of face recognition which 1is fast,
reasonably simple and accurate, the proposed
approach satisfies these requirements. These
results can change for large number of persons in
the same database. The performance also depends
on matching of training and test sets.

The comparison of the proposed approach with
the other well-known methods is missing in this
paper. In future work, this comparison will be
made using the methods mentioned in the
Introduction section.
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